Limits...
Characterizing the normal proteome of human ciliary body.

Goel R, Murthy KR, Srikanth SM, Pinto SM, Bhattacharjee M, Kelkar DS, Madugundu AK, Dey G, Mohan SS, Krishna V, Prasad TsK, Chakravarti S, Harsha H, Pandey A - Clin Proteomics (2013)

Bottom Line: We identified a number of proteins that were previously not described in the ciliary body including importin 5 (IPO5), atlastin-2 (ATL2), B-cell receptor associated protein 29 (BCAP29), basigin (BSG), calpain-1 (CAPN1), copine 6 (CPNE6), fibulin 1 (FBLN1) and galectin 1 (LGALS1).We compared the plasma proteome with the ciliary body proteome and found that the large majority of proteins in the ciliary body were also detectable in the plasma while 896 proteins were unique to the ciliary body.We also classified proteins using pathway enrichment analysis and found most of proteins associated with ubiquitin pathway, EIF2 signaling, glycolysis and gluconeogenesis.

View Article: PubMed Central - HTML - PubMed

Affiliation: Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA. pandey@jhmi.edu.

ABSTRACT

Background: The ciliary body is the circumferential muscular tissue located just behind the iris in the anterior chamber of the eye. It plays a pivotal role in the production of aqueous humor, maintenance of the lens zonules and accommodation by changing the shape of the crystalline lens. The ciliary body is the major target of drugs against glaucoma as its inhibition leads to a drop in intraocular pressure. A molecular study of the ciliary body could provide a better understanding about the pathophysiological processes that occur in glaucoma. Thus far, no large-scale proteomic investigation has been reported for the human ciliary body.

Results: In this study, we have carried out an in-depth LC-MS/MS-based proteomic analysis of normal human ciliary body and have identified 2,815 proteins. We identified a number of proteins that were previously not described in the ciliary body including importin 5 (IPO5), atlastin-2 (ATL2), B-cell receptor associated protein 29 (BCAP29), basigin (BSG), calpain-1 (CAPN1), copine 6 (CPNE6), fibulin 1 (FBLN1) and galectin 1 (LGALS1). We compared the plasma proteome with the ciliary body proteome and found that the large majority of proteins in the ciliary body were also detectable in the plasma while 896 proteins were unique to the ciliary body. We also classified proteins using pathway enrichment analysis and found most of proteins associated with ubiquitin pathway, EIF2 signaling, glycolysis and gluconeogenesis.

Conclusions: More than 95% of the identified proteins have not been previously described in the ciliary body proteome. This is the largest catalogue of proteins reported thus far in the ciliary body that should provide new insights into our understanding of the factors involved in maintaining the secretion of aqueous humor. The identification of these proteins will aid in understanding various eye diseases of the anterior segment such as glaucoma and presbyopia.

No MeSH data available.


Related in: MedlinePlus

Subcellular localization and functional annotation of proteins identified from the ciliary body. A. Gene Ontology analysis for subcellular localization of identified proteins B. Molecular function of identified proteins C. Biological processes of the identified proteins. The data regarding proteins was obtained from Human Protein Reference Database (http://www.hprd.org).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3750387&req=5

Figure 5: Subcellular localization and functional annotation of proteins identified from the ciliary body. A. Gene Ontology analysis for subcellular localization of identified proteins B. Molecular function of identified proteins C. Biological processes of the identified proteins. The data regarding proteins was obtained from Human Protein Reference Database (http://www.hprd.org).

Mentions: The identified ciliary body proteins were functionally categorized based on subcellular localization, molecular function and biological processes by searching against the manually-curated Human Protein Reference Database (HPRD; http://www.hprd.org) [52]. The analysis returned only those classifications with at least 2% difference between the annotation terms to limit the number of classifications types. As illustrated in Figure 5A, the majority of the proteins reported in our study were localized to the cytoplasm (27%), nucleus (15%), plasma membrane (10%) or the mitochondria (10%) while 16% of these were unclassified. In the molecular function category, GO terms related to transporter activity are overrepresented. This was expected as the ciliary body secretes aqueous humor by a process of active transport. The majority of the proteins are involved in catalytic activity, GTPase activity, hydrolase activity and structural molecule activity as seen in Figure 5B. A large group of proteins are still unclassified in terms of their molecular function. Moreover, in terms of biological processes, the ciliary body enriched proteins were comprised of a substantially higher percentage of metabolism (22%) and energy pathway (13%) related proteins owing to presence of numerous mitochondria in the inner non-pigmented epithelial layer.


Characterizing the normal proteome of human ciliary body.

Goel R, Murthy KR, Srikanth SM, Pinto SM, Bhattacharjee M, Kelkar DS, Madugundu AK, Dey G, Mohan SS, Krishna V, Prasad TsK, Chakravarti S, Harsha H, Pandey A - Clin Proteomics (2013)

Subcellular localization and functional annotation of proteins identified from the ciliary body. A. Gene Ontology analysis for subcellular localization of identified proteins B. Molecular function of identified proteins C. Biological processes of the identified proteins. The data regarding proteins was obtained from Human Protein Reference Database (http://www.hprd.org).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3750387&req=5

Figure 5: Subcellular localization and functional annotation of proteins identified from the ciliary body. A. Gene Ontology analysis for subcellular localization of identified proteins B. Molecular function of identified proteins C. Biological processes of the identified proteins. The data regarding proteins was obtained from Human Protein Reference Database (http://www.hprd.org).
Mentions: The identified ciliary body proteins were functionally categorized based on subcellular localization, molecular function and biological processes by searching against the manually-curated Human Protein Reference Database (HPRD; http://www.hprd.org) [52]. The analysis returned only those classifications with at least 2% difference between the annotation terms to limit the number of classifications types. As illustrated in Figure 5A, the majority of the proteins reported in our study were localized to the cytoplasm (27%), nucleus (15%), plasma membrane (10%) or the mitochondria (10%) while 16% of these were unclassified. In the molecular function category, GO terms related to transporter activity are overrepresented. This was expected as the ciliary body secretes aqueous humor by a process of active transport. The majority of the proteins are involved in catalytic activity, GTPase activity, hydrolase activity and structural molecule activity as seen in Figure 5B. A large group of proteins are still unclassified in terms of their molecular function. Moreover, in terms of biological processes, the ciliary body enriched proteins were comprised of a substantially higher percentage of metabolism (22%) and energy pathway (13%) related proteins owing to presence of numerous mitochondria in the inner non-pigmented epithelial layer.

Bottom Line: We identified a number of proteins that were previously not described in the ciliary body including importin 5 (IPO5), atlastin-2 (ATL2), B-cell receptor associated protein 29 (BCAP29), basigin (BSG), calpain-1 (CAPN1), copine 6 (CPNE6), fibulin 1 (FBLN1) and galectin 1 (LGALS1).We compared the plasma proteome with the ciliary body proteome and found that the large majority of proteins in the ciliary body were also detectable in the plasma while 896 proteins were unique to the ciliary body.We also classified proteins using pathway enrichment analysis and found most of proteins associated with ubiquitin pathway, EIF2 signaling, glycolysis and gluconeogenesis.

View Article: PubMed Central - HTML - PubMed

Affiliation: Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA. pandey@jhmi.edu.

ABSTRACT

Background: The ciliary body is the circumferential muscular tissue located just behind the iris in the anterior chamber of the eye. It plays a pivotal role in the production of aqueous humor, maintenance of the lens zonules and accommodation by changing the shape of the crystalline lens. The ciliary body is the major target of drugs against glaucoma as its inhibition leads to a drop in intraocular pressure. A molecular study of the ciliary body could provide a better understanding about the pathophysiological processes that occur in glaucoma. Thus far, no large-scale proteomic investigation has been reported for the human ciliary body.

Results: In this study, we have carried out an in-depth LC-MS/MS-based proteomic analysis of normal human ciliary body and have identified 2,815 proteins. We identified a number of proteins that were previously not described in the ciliary body including importin 5 (IPO5), atlastin-2 (ATL2), B-cell receptor associated protein 29 (BCAP29), basigin (BSG), calpain-1 (CAPN1), copine 6 (CPNE6), fibulin 1 (FBLN1) and galectin 1 (LGALS1). We compared the plasma proteome with the ciliary body proteome and found that the large majority of proteins in the ciliary body were also detectable in the plasma while 896 proteins were unique to the ciliary body. We also classified proteins using pathway enrichment analysis and found most of proteins associated with ubiquitin pathway, EIF2 signaling, glycolysis and gluconeogenesis.

Conclusions: More than 95% of the identified proteins have not been previously described in the ciliary body proteome. This is the largest catalogue of proteins reported thus far in the ciliary body that should provide new insights into our understanding of the factors involved in maintaining the secretion of aqueous humor. The identification of these proteins will aid in understanding various eye diseases of the anterior segment such as glaucoma and presbyopia.

No MeSH data available.


Related in: MedlinePlus