Limits...
Genetic structure of the gentle Africanized honey bee population (gAHB) in Puerto Rico.

Galindo-Cardona A, Acevedo-Gonzalez JP, Rivera-Marchand B, Giray T - BMC Genet. (2013)

Bottom Line: The genetic variability in this Africanized population was similar to that reported in studies from Texas.Two loci with European private alleles, one on Linkage Group 7, known to carry two known defensiveness Quantitative Trait Loci (QTLs), and the other on Linkage Group 1, known to carry three functionally studied genes and 11 candidate genes associated with Varroa resistance mechanisms were respectively, significantly greater or lower in European allele frequency than the other loci with European private alleles.Genetic structure of Puerto Rico gAHB differs from mainland AHB populations, probably representing evolutionary processes on the island.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Crops and AgroEnvironmental Sciences, Agricultural Experimental Station, University of Puerto Rico, Mayaguez, South Botanical Garden, Guayacán St. 1193, San Juan PR 00926, Puerto Rico. coleopterino@gmail.com

ABSTRACT

Background: The Africanized honey bee is one of the most spectacular invasions in the Americas. African bees escaped from apiaries in Brazil in 1956, spread over Americas and by 1994 they were reported in Puerto Rico. In contrast to other places, the oceanic island conditions in Puerto Rico may mean a single introduction and different dynamics of the resident European and new-coming Africanized bees.To examine the genetic variation of honey bee feral populations and colonies from different locations in Puerto Rico, we used eight known polymorphic microsatellite loci.

Results: In Puerto Rico, gAHB population does not show any genetic structure (Fst = 0.0783), and is best described as one honey bee population, product of hybridization of AHB and EHB. The genetic variability in this Africanized population was similar to that reported in studies from Texas. We observed that European private allele frequencies are high in all but one locus. This contrasts with mainland Africanized populations, where European allele frequencies are diminished. Two loci with European private alleles, one on Linkage Group 7, known to carry two known defensiveness Quantitative Trait Loci (QTLs), and the other on Linkage Group 1, known to carry three functionally studied genes and 11 candidate genes associated with Varroa resistance mechanisms were respectively, significantly greater or lower in European allele frequency than the other loci with European private alleles.

Conclusions: Genetic structure of Puerto Rico gAHB differs from mainland AHB populations, probably representing evolutionary processes on the island.

Show MeSH

Related in: MedlinePlus

Microsatellite loci A79, A113, A107, A14, A88, A35 and ED1 (black lines) associated to linkage groups with aggressive behavior Quantitative Trait Loci Sting 1, 2, and 3 (red line) [[51]] and Varroa resistance genes (blue lines): scracht (scrt), Dynein heavy chain 64C (Dhc64c), Immunoglobulin gene Superfamily (otk), groucho (gro), Futsch, paralytic (para), fringe (fng), Glutamate-gated Cl- channel (GluCl) [[52]] more three groups that including 11 new gene to Varroa Sensitive Hygiene Behavior [[57]].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3750330&req=5

Figure 5: Microsatellite loci A79, A113, A107, A14, A88, A35 and ED1 (black lines) associated to linkage groups with aggressive behavior Quantitative Trait Loci Sting 1, 2, and 3 (red line) [[51]] and Varroa resistance genes (blue lines): scracht (scrt), Dynein heavy chain 64C (Dhc64c), Immunoglobulin gene Superfamily (otk), groucho (gro), Futsch, paralytic (para), fringe (fng), Glutamate-gated Cl- channel (GluCl) [[52]] more three groups that including 11 new gene to Varroa Sensitive Hygiene Behavior [[57]].

Mentions: In contrast, another locus, A79, that is on the same Linkage Group as Varroa mite resistance related genes (identified in an expression study [54]), showed significantly greater Africanized allele frequency (Figure 5). This same linkage group also carries the QTL Sting 3, and this may explain variation in defensive response of gAHB colonies described elsewhere [14-16]. Varroa has been an important pest on the island, and resulted in diminished bee populations, as can be assessed from honey bee collection data reported by [16]. Currently, the virulent Korean haplotype of Varroa destructor is present on the island yet does not lead to colony losses or overt symptoms such as viral damage to bees (unpublished results, Jenny Acevedo, Alberto Galindo, and Tugrul Giray, see also [55]).


Genetic structure of the gentle Africanized honey bee population (gAHB) in Puerto Rico.

Galindo-Cardona A, Acevedo-Gonzalez JP, Rivera-Marchand B, Giray T - BMC Genet. (2013)

Microsatellite loci A79, A113, A107, A14, A88, A35 and ED1 (black lines) associated to linkage groups with aggressive behavior Quantitative Trait Loci Sting 1, 2, and 3 (red line) [[51]] and Varroa resistance genes (blue lines): scracht (scrt), Dynein heavy chain 64C (Dhc64c), Immunoglobulin gene Superfamily (otk), groucho (gro), Futsch, paralytic (para), fringe (fng), Glutamate-gated Cl- channel (GluCl) [[52]] more three groups that including 11 new gene to Varroa Sensitive Hygiene Behavior [[57]].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3750330&req=5

Figure 5: Microsatellite loci A79, A113, A107, A14, A88, A35 and ED1 (black lines) associated to linkage groups with aggressive behavior Quantitative Trait Loci Sting 1, 2, and 3 (red line) [[51]] and Varroa resistance genes (blue lines): scracht (scrt), Dynein heavy chain 64C (Dhc64c), Immunoglobulin gene Superfamily (otk), groucho (gro), Futsch, paralytic (para), fringe (fng), Glutamate-gated Cl- channel (GluCl) [[52]] more three groups that including 11 new gene to Varroa Sensitive Hygiene Behavior [[57]].
Mentions: In contrast, another locus, A79, that is on the same Linkage Group as Varroa mite resistance related genes (identified in an expression study [54]), showed significantly greater Africanized allele frequency (Figure 5). This same linkage group also carries the QTL Sting 3, and this may explain variation in defensive response of gAHB colonies described elsewhere [14-16]. Varroa has been an important pest on the island, and resulted in diminished bee populations, as can be assessed from honey bee collection data reported by [16]. Currently, the virulent Korean haplotype of Varroa destructor is present on the island yet does not lead to colony losses or overt symptoms such as viral damage to bees (unpublished results, Jenny Acevedo, Alberto Galindo, and Tugrul Giray, see also [55]).

Bottom Line: The genetic variability in this Africanized population was similar to that reported in studies from Texas.Two loci with European private alleles, one on Linkage Group 7, known to carry two known defensiveness Quantitative Trait Loci (QTLs), and the other on Linkage Group 1, known to carry three functionally studied genes and 11 candidate genes associated with Varroa resistance mechanisms were respectively, significantly greater or lower in European allele frequency than the other loci with European private alleles.Genetic structure of Puerto Rico gAHB differs from mainland AHB populations, probably representing evolutionary processes on the island.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Crops and AgroEnvironmental Sciences, Agricultural Experimental Station, University of Puerto Rico, Mayaguez, South Botanical Garden, Guayacán St. 1193, San Juan PR 00926, Puerto Rico. coleopterino@gmail.com

ABSTRACT

Background: The Africanized honey bee is one of the most spectacular invasions in the Americas. African bees escaped from apiaries in Brazil in 1956, spread over Americas and by 1994 they were reported in Puerto Rico. In contrast to other places, the oceanic island conditions in Puerto Rico may mean a single introduction and different dynamics of the resident European and new-coming Africanized bees.To examine the genetic variation of honey bee feral populations and colonies from different locations in Puerto Rico, we used eight known polymorphic microsatellite loci.

Results: In Puerto Rico, gAHB population does not show any genetic structure (Fst = 0.0783), and is best described as one honey bee population, product of hybridization of AHB and EHB. The genetic variability in this Africanized population was similar to that reported in studies from Texas. We observed that European private allele frequencies are high in all but one locus. This contrasts with mainland Africanized populations, where European allele frequencies are diminished. Two loci with European private alleles, one on Linkage Group 7, known to carry two known defensiveness Quantitative Trait Loci (QTLs), and the other on Linkage Group 1, known to carry three functionally studied genes and 11 candidate genes associated with Varroa resistance mechanisms were respectively, significantly greater or lower in European allele frequency than the other loci with European private alleles.

Conclusions: Genetic structure of Puerto Rico gAHB differs from mainland AHB populations, probably representing evolutionary processes on the island.

Show MeSH
Related in: MedlinePlus