Limits...
Exposure assessment of dietary cadmium: findings from Shanghainese over 40 years, China.

He P, Lu Y, Liang Y, Chen B, Wu M, Li S, He G, Jin T - BMC Public Health (2013)

Bottom Line: Environmental exposure to cadmium causes renal dysfunction and bone damage.The mean values of urinary and blood cadmium among the study population were 0.5 μg/L and 1.9 μg/L, respectively.Vegetables and rice were the main sources of dietary cadmium intake.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China.

ABSTRACT

Background: Environmental exposure to cadmium causes renal dysfunction and bone damage. Cadmium contamination in food is regarded as the main environmental source of non-occupational exposure. The aim of this study was to assess the contribution of dietary cadmium exposure in environmental cadmium exposure and its health risk among adults in Shanghai, China.

Methods: A cross-sectional survey about food consumption was conducted in 2008 among 207 citizens aged over 40 years in Shanghai, China. The food frequency questionnaire was combined with food, tobacco and water cadmium exposure to estimate the daily environmental cadmium exposure in both point and probabilistic estimations. Urine and blood samples of the participants were analyzed for internal exposure to total cadmium. Correlation analysis was conducted between the internal cadmium exposure and environmental cadmium exposure.

Results: According to the point estimation, average daily environmental cadmium exposure of the participants was 16.7 μg/day and approached 33.8% of the provisional tolerable daily intake (PTDI). Dietary and tobacco cadmium exposure approached 25.8% and 7.9% of the PTDI, respectively. Males had higher levels of dietary cadmium exposure than females (p?=?0.002). The probabilistic model showed that 93.4% of the population did not have any health risks from dietary cadmium exposure. By sensitivity analysis, tobacco consumption, tobacco cadmium level, cadmium in vegetables and cadmium in rice accounted for 27.5%, 24.9%, 20.2% and 14.6% of the total cadmium exposure, respectively. The mean values of urinary and blood cadmium among the study population were 0.5 μg/L and 1.9 μg/L, respectively. Positive correlations were observed between environmental cadmium exposure and blood cadmium (R?=?0.52, P<0.01), tobacco cadmium intake and blood cadmium excluding non-smokers (R?=?0.26, P?=?0.049<0.05), and urine cadmium and age (R?=?0.15, P?=?0.037).

Conclusions: It has been suggested that there is no increased health risk among adult residents in Shanghai, China because of recent total cadmium exposure. Vegetables and rice were the main sources of dietary cadmium intake. Tobacco cadmium exposure, which accounted for approximately 25% of the total dietary cadmium exposure, was another important source of non-occupational cadmium exposure.

Show MeSH

Related in: MedlinePlus

Contribution of cadmium factors to daily cadmium exposure (%).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3750310&req=5

Figure 1: Contribution of cadmium factors to daily cadmium exposure (%).

Mentions: Tobacco cadmium exposure was 3.9 μg/day (range from 0–73.1 μg/day). The median and P95 were 0 and 18.8 μg/day, respectively. For smokers, the mean tobacco cadmium exposure was 13.8?±?12.3 μg/day which almost equaled to the dietary cadmium exposure (14.0?±?4.8 μg/day). The cadmium levels of water samples were lower than the LOD (0.05 μg/L). Therefore, we assumed that the local water cadmium level was half of the LOD (0.025 μg/L), and participants drank 1200 mL water daily. Accordingly, the mean water cadmium exposure was 0.03 μg/day and accounted for 0.2% of the total environmental cadmium exposure. As shown in Figure 1, the three main exposure factors were vegetables (30.6%), rice (28.5%) and seafood (23.5%). These food items accounted for 82.6% of the total environmental cadmium exposure.


Exposure assessment of dietary cadmium: findings from Shanghainese over 40 years, China.

He P, Lu Y, Liang Y, Chen B, Wu M, Li S, He G, Jin T - BMC Public Health (2013)

Contribution of cadmium factors to daily cadmium exposure (%).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3750310&req=5

Figure 1: Contribution of cadmium factors to daily cadmium exposure (%).
Mentions: Tobacco cadmium exposure was 3.9 μg/day (range from 0–73.1 μg/day). The median and P95 were 0 and 18.8 μg/day, respectively. For smokers, the mean tobacco cadmium exposure was 13.8?±?12.3 μg/day which almost equaled to the dietary cadmium exposure (14.0?±?4.8 μg/day). The cadmium levels of water samples were lower than the LOD (0.05 μg/L). Therefore, we assumed that the local water cadmium level was half of the LOD (0.025 μg/L), and participants drank 1200 mL water daily. Accordingly, the mean water cadmium exposure was 0.03 μg/day and accounted for 0.2% of the total environmental cadmium exposure. As shown in Figure 1, the three main exposure factors were vegetables (30.6%), rice (28.5%) and seafood (23.5%). These food items accounted for 82.6% of the total environmental cadmium exposure.

Bottom Line: Environmental exposure to cadmium causes renal dysfunction and bone damage.The mean values of urinary and blood cadmium among the study population were 0.5 μg/L and 1.9 μg/L, respectively.Vegetables and rice were the main sources of dietary cadmium intake.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China.

ABSTRACT

Background: Environmental exposure to cadmium causes renal dysfunction and bone damage. Cadmium contamination in food is regarded as the main environmental source of non-occupational exposure. The aim of this study was to assess the contribution of dietary cadmium exposure in environmental cadmium exposure and its health risk among adults in Shanghai, China.

Methods: A cross-sectional survey about food consumption was conducted in 2008 among 207 citizens aged over 40 years in Shanghai, China. The food frequency questionnaire was combined with food, tobacco and water cadmium exposure to estimate the daily environmental cadmium exposure in both point and probabilistic estimations. Urine and blood samples of the participants were analyzed for internal exposure to total cadmium. Correlation analysis was conducted between the internal cadmium exposure and environmental cadmium exposure.

Results: According to the point estimation, average daily environmental cadmium exposure of the participants was 16.7 μg/day and approached 33.8% of the provisional tolerable daily intake (PTDI). Dietary and tobacco cadmium exposure approached 25.8% and 7.9% of the PTDI, respectively. Males had higher levels of dietary cadmium exposure than females (p?=?0.002). The probabilistic model showed that 93.4% of the population did not have any health risks from dietary cadmium exposure. By sensitivity analysis, tobacco consumption, tobacco cadmium level, cadmium in vegetables and cadmium in rice accounted for 27.5%, 24.9%, 20.2% and 14.6% of the total cadmium exposure, respectively. The mean values of urinary and blood cadmium among the study population were 0.5 μg/L and 1.9 μg/L, respectively. Positive correlations were observed between environmental cadmium exposure and blood cadmium (R?=?0.52, P<0.01), tobacco cadmium intake and blood cadmium excluding non-smokers (R?=?0.26, P?=?0.049<0.05), and urine cadmium and age (R?=?0.15, P?=?0.037).

Conclusions: It has been suggested that there is no increased health risk among adult residents in Shanghai, China because of recent total cadmium exposure. Vegetables and rice were the main sources of dietary cadmium intake. Tobacco cadmium exposure, which accounted for approximately 25% of the total dietary cadmium exposure, was another important source of non-occupational cadmium exposure.

Show MeSH
Related in: MedlinePlus