Limits...
A novel approach to fabricate silk nanofibers containing hydroxyapatite nanoparticles using a three-way stopcock connector.

Sheikh FA, Ju HW, Moon BM, Park HJ, Kim JH, Lee OJ, Park CH - Nanoscale Res Lett (2013)

Bottom Line: In this work, we had successfully used a three-way stopcock connector to mix the two different solutions, and very shortly, this solution is ejected out to form nanofibers due to electric fields.Different blend ratios consisting HAp NPs had been electrospun into nanofibers.These characterization techniques revealed that HAp NPs can be easily introduced in silk nanofibers using a stopcock connector, and this method favorably preserves the intact nature of silk fibroin and HAp NPs.

View Article: PubMed Central - HTML - PubMed

Affiliation: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, South Korea ; Department of Chemistry, University of Texas-Pan American, Edinburg, Texas 78539, USA.

ABSTRACT
Electrospinning technique is commonly used to produce micro- and/or nanofibers, which utilizes electrical forces to produce polymeric fibers with diameters ranging from several micrometers down to few nanometers. Desirably, electrospun materials provide highly porous structure and appropriate pore size for initial cell attachment and proliferation and thereby enable the exchange of nutrients. Composite nanofibers consisting of silk and hydroxyapatite nanoparticles (HAp) (NPs) had been considered as an excellent choice due to their efficient biocompatibility and bone-mimicking properties. To prepare these nanofiber composites, it requires the use of acidic solutions which have serious consequences on the nature of both silk and HAp NPs. It is ideal to create these nanofibers using aqueous solutions in which the physicochemical nature of both materials can be retained. However, to create those nanofibers is often difficult to obtain because of the fact that aqueous solutions of silk and HAp NPs can precipitate before they can be ejected into fibers during the electrospinning process. In this work, we had successfully used a three-way stopcock connector to mix the two different solutions, and very shortly, this solution is ejected out to form nanofibers due to electric fields. Different blend ratios consisting HAp NPs had been electrospun into nanofibers. The physicochemical aspects of fabricated nanofiber had been characterized by different state of techniques like that of FE-SEM, EDS, TEM, TEM-EDS, TGA, FT-IR, and XRD. These characterization techniques revealed that HAp NPs can be easily introduced in silk nanofibers using a stopcock connector, and this method favorably preserves the intact nature of silk fibroin and HAp NPs. Moreover, nanofibers obtained by this strategy were tested for cell toxicity and cell attachment studies using NIH 3 T3 fibroblasts which indicated non-toxic behavior and good attachment of cells upon incubation in the presence of nanofibers.

No MeSH data available.


Related in: MedlinePlus

Optical micrograph of the composite solution containing silk/PEO and HAp/PEO after mixing using the threeway connector.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3750300&req=5

Figure 3: Optical micrograph of the composite solution containing silk/PEO and HAp/PEO after mixing using the threeway connector.

Mentions: The three-way stopcock connector was used as the solution blending tool before ejecting the solution into nanofibers. In this regard, Figure 3 demonstrates the degree of dispersion of HAp NPs in the silk solution. This optical micrograph was taken from silk/PEO and HAp/PEO composite solution immediately after mixing using the threeway connector. In this figure, we can clearly observe that HAp NPs are completely dispersed in the silk solution, which further confirms that HAp NPs can be easily carried along with the electrospinning solution during fiber formation. Electrospinning of silk solutions containing various amounts of HAp NPs (i.e., 0%, 10%, 30%, and 50%) afforded in the fabrication of nanofibers with desirable morphology (Figure 4). Figure 4A represents the results after electrospinning of pure silk solutions; it can be observed that nanofibers are smooth, uniform, continuous, and bead-free. Moreover, its counterparts containing HAp NPs are represented in Figure 4B,C,D. By observing these figures, one can come up with a simple conclusion that general morphology had not been affected by the addition of HAp NPs. However, it can be observed that there is a reasonable increase in fiber diameters due to the addition of HAp NPs. To find out the actual effect caused due to the addition of HAp NPs on nanofiber, the average diameters of nanofibers were calculated from randomly selected individual fibers (100 diameters measured per sample) using the image analyzer software (Innerview 2.0). In this regard, Figure 5 presents the bar graphs for diameters calculated from each nanofiber combinations. It can be observed that pristine nanofibers had an average diameter of 110 ± 40 nm, and nanofibers modified with 10%, 30%, and 50% HAp NPs had increased diameters of 163 ± 45 nm, 273 ± 70 nm, and 212 ± 71 nm, which indicate the allocation of higher viscosity due to the presence of HAp NPs colloid which resulted in large droplet formation, giving it a tough bending instability during fiber formation and that finally resulted to the increase of the nanofiber diameters [26].


A novel approach to fabricate silk nanofibers containing hydroxyapatite nanoparticles using a three-way stopcock connector.

Sheikh FA, Ju HW, Moon BM, Park HJ, Kim JH, Lee OJ, Park CH - Nanoscale Res Lett (2013)

Optical micrograph of the composite solution containing silk/PEO and HAp/PEO after mixing using the threeway connector.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3750300&req=5

Figure 3: Optical micrograph of the composite solution containing silk/PEO and HAp/PEO after mixing using the threeway connector.
Mentions: The three-way stopcock connector was used as the solution blending tool before ejecting the solution into nanofibers. In this regard, Figure 3 demonstrates the degree of dispersion of HAp NPs in the silk solution. This optical micrograph was taken from silk/PEO and HAp/PEO composite solution immediately after mixing using the threeway connector. In this figure, we can clearly observe that HAp NPs are completely dispersed in the silk solution, which further confirms that HAp NPs can be easily carried along with the electrospinning solution during fiber formation. Electrospinning of silk solutions containing various amounts of HAp NPs (i.e., 0%, 10%, 30%, and 50%) afforded in the fabrication of nanofibers with desirable morphology (Figure 4). Figure 4A represents the results after electrospinning of pure silk solutions; it can be observed that nanofibers are smooth, uniform, continuous, and bead-free. Moreover, its counterparts containing HAp NPs are represented in Figure 4B,C,D. By observing these figures, one can come up with a simple conclusion that general morphology had not been affected by the addition of HAp NPs. However, it can be observed that there is a reasonable increase in fiber diameters due to the addition of HAp NPs. To find out the actual effect caused due to the addition of HAp NPs on nanofiber, the average diameters of nanofibers were calculated from randomly selected individual fibers (100 diameters measured per sample) using the image analyzer software (Innerview 2.0). In this regard, Figure 5 presents the bar graphs for diameters calculated from each nanofiber combinations. It can be observed that pristine nanofibers had an average diameter of 110 ± 40 nm, and nanofibers modified with 10%, 30%, and 50% HAp NPs had increased diameters of 163 ± 45 nm, 273 ± 70 nm, and 212 ± 71 nm, which indicate the allocation of higher viscosity due to the presence of HAp NPs colloid which resulted in large droplet formation, giving it a tough bending instability during fiber formation and that finally resulted to the increase of the nanofiber diameters [26].

Bottom Line: In this work, we had successfully used a three-way stopcock connector to mix the two different solutions, and very shortly, this solution is ejected out to form nanofibers due to electric fields.Different blend ratios consisting HAp NPs had been electrospun into nanofibers.These characterization techniques revealed that HAp NPs can be easily introduced in silk nanofibers using a stopcock connector, and this method favorably preserves the intact nature of silk fibroin and HAp NPs.

View Article: PubMed Central - HTML - PubMed

Affiliation: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, South Korea ; Department of Chemistry, University of Texas-Pan American, Edinburg, Texas 78539, USA.

ABSTRACT
Electrospinning technique is commonly used to produce micro- and/or nanofibers, which utilizes electrical forces to produce polymeric fibers with diameters ranging from several micrometers down to few nanometers. Desirably, electrospun materials provide highly porous structure and appropriate pore size for initial cell attachment and proliferation and thereby enable the exchange of nutrients. Composite nanofibers consisting of silk and hydroxyapatite nanoparticles (HAp) (NPs) had been considered as an excellent choice due to their efficient biocompatibility and bone-mimicking properties. To prepare these nanofiber composites, it requires the use of acidic solutions which have serious consequences on the nature of both silk and HAp NPs. It is ideal to create these nanofibers using aqueous solutions in which the physicochemical nature of both materials can be retained. However, to create those nanofibers is often difficult to obtain because of the fact that aqueous solutions of silk and HAp NPs can precipitate before they can be ejected into fibers during the electrospinning process. In this work, we had successfully used a three-way stopcock connector to mix the two different solutions, and very shortly, this solution is ejected out to form nanofibers due to electric fields. Different blend ratios consisting HAp NPs had been electrospun into nanofibers. The physicochemical aspects of fabricated nanofiber had been characterized by different state of techniques like that of FE-SEM, EDS, TEM, TEM-EDS, TGA, FT-IR, and XRD. These characterization techniques revealed that HAp NPs can be easily introduced in silk nanofibers using a stopcock connector, and this method favorably preserves the intact nature of silk fibroin and HAp NPs. Moreover, nanofibers obtained by this strategy were tested for cell toxicity and cell attachment studies using NIH 3 T3 fibroblasts which indicated non-toxic behavior and good attachment of cells upon incubation in the presence of nanofibers.

No MeSH data available.


Related in: MedlinePlus