Limits...
Improving hand hygiene compliance in the emergency department: getting to the point.

Scheithauer S, Kamerseder V, Petersen P, Brokmann JC, Lopez-Gonzalez LA, Mach C, Schulze-Röbbecke R, Lemmen SW - BMC Infect. Dis. (2013)

Bottom Line: The number of HR needed for one patient care significantly decreased from 22 to 13 for the non-surgical and from 13 to 7 for the surgical patients (both p<0.001) due to improved workflow practices after implementing SOPs.Avoidable opportunities as well as glove usage instead of HR significantly decreased by 70% and 73%, respectively.Importantly, HH compliance improved significantly without increasing workload.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Infection Control and Infectious Diseases, RWTH Aachen University Hospital, Aachen, Germany. sscheithauer@ukaachen.de

ABSTRACT

Background: The emergency department (ED) represents an environment with a high density of invasive, and thus, infection-prone procedures. The two primary goals of this study were (1) to define the number of hand-rubs needed for an individual patient care at the ED and (2) to optimize hand hygiene (HH) compliance without increasing workload.

Methods: Prospective tri-phase (6-week observation phases interrupted by two 6-week interventions) before after study to determine opportunities for and compliance with HH (WHO definition). Standard operating procedures (SOPs) were optimized for invasive procedures during two predefined intervention periods (phases I and II) to improve workflow practices and thus compliance with HH.

Results: 378 patient cases were evaluated with 5674 opportunities for hand rubs (HR) and 1664 HR performed. Compliance significantly increased from 21% (545/2603) to 29% (467/1607), and finally 45% (652/1464; all p<0.001) in phases 1, 2, and 3, respectively. The number of HR needed for one patient care significantly decreased from 22 to 13 for the non-surgical and from 13 to 7 for the surgical patients (both p<0.001) due to improved workflow practices after implementing SOPs. In parallel, the number of HR performed increased from 3 to 5 for non-surgical (p<0.001) and from 2 to 3 for surgical patients (p=0.317). Avoidable opportunities as well as glove usage instead of HR significantly decreased by 70% and 73%, respectively.

Conclusions: Our study provides the first detailed data on HH in an ED setting. Importantly, HH compliance improved significantly without increasing workload.

Show MeSH
Decrease of common mistakes during the study.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3750281&req=5

Figure 2: Decrease of common mistakes during the study.

Mentions: A total of 5674 opportunities for HH and 1664 HR were recorded during the tri-phase study period. The number of opportunities steadily declined from phase 1 to phase 3 indicating a work-flow optimization. In contrary, the number of HR increased from phase1 to phase 3. Thus, resulting in a significant increase (p<0.001) in compliance from 21% to 45% over the three phases of the study (Figure 1). 125, 126, and 127 individual patient care episodes were included in the phases I, II, and III. In detail, 2603, 1607, and 1464 opportunities occurred during phase I, II, and III, and 546, 467, and 652 hand rubs were performed across the periods, respectively. Profession-specific analysis revealed an increase in all groups, but trainees (61 hand-rubs / 205 opportunities; compliance: 30% in phase 1; 33% in phase 3). Nurses started with 18% and reached 45% (overall hand-rubs/opportunities: 695/2448); medical students came from 20% and ended at 51% (overall hand-rubs/opportunities: 308/1141); physicians‘ compliance increased from 26% to 43% (overall hand-rubs/opportunities: 600/1889). Compliance revealed indication-specific differences with a range from 5% (indication 2) to 38% (indication 4) at baseline. The increase of compliance occurred for all indications. However, the greatest improvement was seem with indication 2 (660% of baseline), the lowest with indication 4 (150% of baseline), respectively. Subgroup analysis revealed no significant differences with the neurological and the medical-abdominal groups starting with 16% compliance and finally reaching 40% and 49%, respectively. The medical-thoracic and the surgical group started with 20% compliance both and ended at 44% and 42%, respectively. Hand rubs and opportunities split up between the patient groups as follows: 347/1378 in neurological patients; 379/1307 in medico-thoracic patients, 309/1079 in medico-abdominal patients, and 411/1442 in surgical patients, respectively. Analysis of the HR opportunities during phase 1 revealed a recurrent number of avoidable opportunities and “systematic mistakes” in workflow practices including re-contaminations after HR and/or not performing the HR immediately before an aseptic task. Optimizing the workflow by implementing SOPs resulted in a reduced number of avoidable opportunities and lower glove usage instead of HR (Figure 2).


Improving hand hygiene compliance in the emergency department: getting to the point.

Scheithauer S, Kamerseder V, Petersen P, Brokmann JC, Lopez-Gonzalez LA, Mach C, Schulze-Röbbecke R, Lemmen SW - BMC Infect. Dis. (2013)

Decrease of common mistakes during the study.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3750281&req=5

Figure 2: Decrease of common mistakes during the study.
Mentions: A total of 5674 opportunities for HH and 1664 HR were recorded during the tri-phase study period. The number of opportunities steadily declined from phase 1 to phase 3 indicating a work-flow optimization. In contrary, the number of HR increased from phase1 to phase 3. Thus, resulting in a significant increase (p<0.001) in compliance from 21% to 45% over the three phases of the study (Figure 1). 125, 126, and 127 individual patient care episodes were included in the phases I, II, and III. In detail, 2603, 1607, and 1464 opportunities occurred during phase I, II, and III, and 546, 467, and 652 hand rubs were performed across the periods, respectively. Profession-specific analysis revealed an increase in all groups, but trainees (61 hand-rubs / 205 opportunities; compliance: 30% in phase 1; 33% in phase 3). Nurses started with 18% and reached 45% (overall hand-rubs/opportunities: 695/2448); medical students came from 20% and ended at 51% (overall hand-rubs/opportunities: 308/1141); physicians‘ compliance increased from 26% to 43% (overall hand-rubs/opportunities: 600/1889). Compliance revealed indication-specific differences with a range from 5% (indication 2) to 38% (indication 4) at baseline. The increase of compliance occurred for all indications. However, the greatest improvement was seem with indication 2 (660% of baseline), the lowest with indication 4 (150% of baseline), respectively. Subgroup analysis revealed no significant differences with the neurological and the medical-abdominal groups starting with 16% compliance and finally reaching 40% and 49%, respectively. The medical-thoracic and the surgical group started with 20% compliance both and ended at 44% and 42%, respectively. Hand rubs and opportunities split up between the patient groups as follows: 347/1378 in neurological patients; 379/1307 in medico-thoracic patients, 309/1079 in medico-abdominal patients, and 411/1442 in surgical patients, respectively. Analysis of the HR opportunities during phase 1 revealed a recurrent number of avoidable opportunities and “systematic mistakes” in workflow practices including re-contaminations after HR and/or not performing the HR immediately before an aseptic task. Optimizing the workflow by implementing SOPs resulted in a reduced number of avoidable opportunities and lower glove usage instead of HR (Figure 2).

Bottom Line: The number of HR needed for one patient care significantly decreased from 22 to 13 for the non-surgical and from 13 to 7 for the surgical patients (both p<0.001) due to improved workflow practices after implementing SOPs.Avoidable opportunities as well as glove usage instead of HR significantly decreased by 70% and 73%, respectively.Importantly, HH compliance improved significantly without increasing workload.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Infection Control and Infectious Diseases, RWTH Aachen University Hospital, Aachen, Germany. sscheithauer@ukaachen.de

ABSTRACT

Background: The emergency department (ED) represents an environment with a high density of invasive, and thus, infection-prone procedures. The two primary goals of this study were (1) to define the number of hand-rubs needed for an individual patient care at the ED and (2) to optimize hand hygiene (HH) compliance without increasing workload.

Methods: Prospective tri-phase (6-week observation phases interrupted by two 6-week interventions) before after study to determine opportunities for and compliance with HH (WHO definition). Standard operating procedures (SOPs) were optimized for invasive procedures during two predefined intervention periods (phases I and II) to improve workflow practices and thus compliance with HH.

Results: 378 patient cases were evaluated with 5674 opportunities for hand rubs (HR) and 1664 HR performed. Compliance significantly increased from 21% (545/2603) to 29% (467/1607), and finally 45% (652/1464; all p<0.001) in phases 1, 2, and 3, respectively. The number of HR needed for one patient care significantly decreased from 22 to 13 for the non-surgical and from 13 to 7 for the surgical patients (both p<0.001) due to improved workflow practices after implementing SOPs. In parallel, the number of HR performed increased from 3 to 5 for non-surgical (p<0.001) and from 2 to 3 for surgical patients (p=0.317). Avoidable opportunities as well as glove usage instead of HR significantly decreased by 70% and 73%, respectively.

Conclusions: Our study provides the first detailed data on HH in an ED setting. Importantly, HH compliance improved significantly without increasing workload.

Show MeSH