Limits...
Hydrolyzed collagen intake increases bone mass of growing rats trained with running exercise.

Takeda S, Park JH, Kawashima E, Ezawa I, Omi N - J Int Soc Sports Nutr (2013)

Bottom Line: These effects were also noted in the adjusted wet weight and dry weight of femur among the 20% protein groups (p < 0.001, p < 0.01 for exercise; p < 0.01, p < 0.001 for dietary HC, respectively).The present study demonstrated that moderate HC intake (where the diet contains 20% protein, of which 30% is HC) increased bone mass during growth period and further promoted the effect of running exercise.On the other hand, a higher HC intake (where the diet contains 40% protein, of which 30% is HC) had no more beneficial effect on bone mass than the moderate HC intake.

View Article: PubMed Central - HTML - PubMed

Affiliation: Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan. ominaomi@taiiku.tsukuba.ac.jp.

ABSTRACT

Background: Some studies have shown that dietary hydrolyzed collagen peptides (HC) effectively prevent age-related bone loss. However, it is not known whether the intake of HC also has positive effect on bone mass or strength when combined with exercise during growth phase.

Methods: We examined the effects of 11 weeks of HC intake and running exercise on bone mass and strength in growing rats. Rats were randomized into four groups, the 20% casein group (Casein20), the 40% casein group (Casein40), the 20% HC group (HC20), and the 40% HC group (HC40). Each group was further divided into exercise groups (Casein20 + Ex, Casein40 + Ex, HC20 + Ex, HC40 + Ex) and non-exercise group (Casein20, Casein40, HC20, HC40). In the HC intake groups, 30% of casein protein was replaced with HC. Exercise group rats were trained 6 days per week on a treadmill (25-30 m/min, 60 min) for 60 days. After being sacrificed, their bone mineral content (BMC) and bone strength were evaluated.

Results: Exercise and dietary HC effects were observed in the adjusted BMC of lumbar spine and tibia among the 20% protein groups (p < 0.001 for exercise; p < 0.05 for dietary HC, respectively). These effects were also noted in the adjusted wet weight and dry weight of femur among the 20% protein groups (p < 0.001, p < 0.01 for exercise; p < 0.01, p < 0.001 for dietary HC, respectively). On the other hand, in adjusted bone breaking force and energy, dietary HC effect was not significant. Among the 40% protein groups, similar results were obtained in the adjusted BMC, femoral weight, bone breaking force, and energy. There were no differences between the 20% protein groups and the 40% protein groups.

Conclusions: The present study demonstrated that moderate HC intake (where the diet contains 20% protein, of which 30% is HC) increased bone mass during growth period and further promoted the effect of running exercise. On the other hand, a higher HC intake (where the diet contains 40% protein, of which 30% is HC) had no more beneficial effect on bone mass than the moderate HC intake.

No MeSH data available.


Related in: MedlinePlus

Adjusted bone mineral content of lumbar spine, tibia proximal metaphysis, and tibia diaphysis. Bone mineral content of lumbar spine (A), tibia proximal metaphysis (B) and tibia diaphysis (C) adjusted to the 100 g body weight. The lumbar spine and tibia of each rat were isolated by dissection, and muscle and connective tissue were carefully removed. BMC was then measured by dual-energy X-ray absorptiometry. Vertical bars indicate the standard error. p value indicates statistical significant difference among dietary protein groups.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3750261&req=5

Figure 1: Adjusted bone mineral content of lumbar spine, tibia proximal metaphysis, and tibia diaphysis. Bone mineral content of lumbar spine (A), tibia proximal metaphysis (B) and tibia diaphysis (C) adjusted to the 100 g body weight. The lumbar spine and tibia of each rat were isolated by dissection, and muscle and connective tissue were carefully removed. BMC was then measured by dual-energy X-ray absorptiometry. Vertical bars indicate the standard error. p value indicates statistical significant difference among dietary protein groups.

Mentions: Exercise and dietary HC effects were obtained in the adjusted BMC of lumbar spine, tibia proximal metaphysis, and tibia diaphysis among the 20% protein groups (p < 0.001 for exercise, p < 0.05 for dietary HC, respectively). These adjusted BMC values were significantly higher in the exercise groups than those in the sedentary groups, and were also significantly higher in the HC groups than those in the casein groups. Among the 40% protein groups, similar results were obtained except for tibia diaphysis (p < 0.01 for exercise; p < 0.05 for dietary HC, respectively) (Figure 1). There were no differences between the 20% protein groups and the 40% protein groups.


Hydrolyzed collagen intake increases bone mass of growing rats trained with running exercise.

Takeda S, Park JH, Kawashima E, Ezawa I, Omi N - J Int Soc Sports Nutr (2013)

Adjusted bone mineral content of lumbar spine, tibia proximal metaphysis, and tibia diaphysis. Bone mineral content of lumbar spine (A), tibia proximal metaphysis (B) and tibia diaphysis (C) adjusted to the 100 g body weight. The lumbar spine and tibia of each rat were isolated by dissection, and muscle and connective tissue were carefully removed. BMC was then measured by dual-energy X-ray absorptiometry. Vertical bars indicate the standard error. p value indicates statistical significant difference among dietary protein groups.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3750261&req=5

Figure 1: Adjusted bone mineral content of lumbar spine, tibia proximal metaphysis, and tibia diaphysis. Bone mineral content of lumbar spine (A), tibia proximal metaphysis (B) and tibia diaphysis (C) adjusted to the 100 g body weight. The lumbar spine and tibia of each rat were isolated by dissection, and muscle and connective tissue were carefully removed. BMC was then measured by dual-energy X-ray absorptiometry. Vertical bars indicate the standard error. p value indicates statistical significant difference among dietary protein groups.
Mentions: Exercise and dietary HC effects were obtained in the adjusted BMC of lumbar spine, tibia proximal metaphysis, and tibia diaphysis among the 20% protein groups (p < 0.001 for exercise, p < 0.05 for dietary HC, respectively). These adjusted BMC values were significantly higher in the exercise groups than those in the sedentary groups, and were also significantly higher in the HC groups than those in the casein groups. Among the 40% protein groups, similar results were obtained except for tibia diaphysis (p < 0.01 for exercise; p < 0.05 for dietary HC, respectively) (Figure 1). There were no differences between the 20% protein groups and the 40% protein groups.

Bottom Line: These effects were also noted in the adjusted wet weight and dry weight of femur among the 20% protein groups (p < 0.001, p < 0.01 for exercise; p < 0.01, p < 0.001 for dietary HC, respectively).The present study demonstrated that moderate HC intake (where the diet contains 20% protein, of which 30% is HC) increased bone mass during growth period and further promoted the effect of running exercise.On the other hand, a higher HC intake (where the diet contains 40% protein, of which 30% is HC) had no more beneficial effect on bone mass than the moderate HC intake.

View Article: PubMed Central - HTML - PubMed

Affiliation: Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan. ominaomi@taiiku.tsukuba.ac.jp.

ABSTRACT

Background: Some studies have shown that dietary hydrolyzed collagen peptides (HC) effectively prevent age-related bone loss. However, it is not known whether the intake of HC also has positive effect on bone mass or strength when combined with exercise during growth phase.

Methods: We examined the effects of 11 weeks of HC intake and running exercise on bone mass and strength in growing rats. Rats were randomized into four groups, the 20% casein group (Casein20), the 40% casein group (Casein40), the 20% HC group (HC20), and the 40% HC group (HC40). Each group was further divided into exercise groups (Casein20 + Ex, Casein40 + Ex, HC20 + Ex, HC40 + Ex) and non-exercise group (Casein20, Casein40, HC20, HC40). In the HC intake groups, 30% of casein protein was replaced with HC. Exercise group rats were trained 6 days per week on a treadmill (25-30 m/min, 60 min) for 60 days. After being sacrificed, their bone mineral content (BMC) and bone strength were evaluated.

Results: Exercise and dietary HC effects were observed in the adjusted BMC of lumbar spine and tibia among the 20% protein groups (p < 0.001 for exercise; p < 0.05 for dietary HC, respectively). These effects were also noted in the adjusted wet weight and dry weight of femur among the 20% protein groups (p < 0.001, p < 0.01 for exercise; p < 0.01, p < 0.001 for dietary HC, respectively). On the other hand, in adjusted bone breaking force and energy, dietary HC effect was not significant. Among the 40% protein groups, similar results were obtained in the adjusted BMC, femoral weight, bone breaking force, and energy. There were no differences between the 20% protein groups and the 40% protein groups.

Conclusions: The present study demonstrated that moderate HC intake (where the diet contains 20% protein, of which 30% is HC) increased bone mass during growth period and further promoted the effect of running exercise. On the other hand, a higher HC intake (where the diet contains 40% protein, of which 30% is HC) had no more beneficial effect on bone mass than the moderate HC intake.

No MeSH data available.


Related in: MedlinePlus