Limits...
A characterization of four B16 murine melanoma cell sublines molecular fingerprint and proliferation behavior.

Danciu C, Falamas A, Dehelean C, Soica C, Radeke H, Barbu-Tudoran L, Bojin F, Pînzaru SC, Munteanu MF - Cancer Cell Int. (2013)

Bottom Line: SERS bands allowed the identification inside the cells of the main bio-molecular components such as: proteins, nucleic acids, and lipids.An "on and off" SERS effect was constantly present, which may be explained in terms of the employed laser power, as well as the possible different orientations of the adsorbed species in the cells in respect to the Ag nanoparticles.MTT results showed that among the four tested cell sub-lines B16 F10 is the most proliferative and B164A5 has the lower growth capacity.

View Article: PubMed Central - HTML - PubMed

Affiliation: Faculty of Pharmacy, University of Medicine and Pharmacy "Victor Babes", EftimieMurgu Square, No. 2, 300041 Timişoara, România.

ABSTRACT

Background: One of the most popular and versatile model of murine melanoma is by inoculating B16 cells in the syngeneic C57BL6J mouse strain. A characterization of different B16 modified cell sub-lines will be of real practical interest. For this aim, modern analytical tools like surface enhanced Raman spectroscopy/scattering (SERS) and MTT were employed to characterize both chemical composition and proliferation behavior of the selected cells.

Methods: High quality SERS signal was recorded from each of the four types of B16 cell sub-lines: B164A5, B16GMCSF, B16FLT3, B16F10, in order to observe the differences between a parent cell line (B164A5) and other derived B16 cell sub-lines. Cells were incubated with silver nanoparticles of 50-100 nm diameter and the nanoparticles uptake inside the cells cytoplasm was proved by transmission electron microscopy (TEM) investigations. In order to characterize proliferation, growth curves of the four B16 cell lines, using different cell numbers and FCS concentration were obtained employing the MTT proliferation assay. For correlations doubling time were calculated.

Results: SERS bands allowed the identification inside the cells of the main bio-molecular components such as: proteins, nucleic acids, and lipids. An "on and off" SERS effect was constantly present, which may be explained in terms of the employed laser power, as well as the possible different orientations of the adsorbed species in the cells in respect to the Ag nanoparticles. MTT results showed that among the four tested cell sub-lines B16 F10 is the most proliferative and B164A5 has the lower growth capacity. Regarding B16FLT3 cells and B16GMCSF cells, they present proliferation ability in between with slight slower potency for B16GMCSF cells.

Conclusion: Molecular fingerprint and proliferation behavior of four B16 melanoma cell sub-lines were elucidated by associating SERS investigations with MTT proliferation assay.

No MeSH data available.


Related in: MedlinePlus

(a,b,c,d): Growth curves employing different number of cells and different FCS concentrations corresponding to a) B164A5 cell line; b) B16F10 cell line; c) B16GMCSF cell line; d) B16FLT3 cell line.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3750233&req=5

Figure 7: (a,b,c,d): Growth curves employing different number of cells and different FCS concentrations corresponding to a) B164A5 cell line; b) B16F10 cell line; c) B16GMCSF cell line; d) B16FLT3 cell line.

Mentions: After doubling time was found for each cell line, MTT assay was employed in order to characterize the growth curves. Different number of cells 15 000 cells, 10 000 cells, 6000 cells, 3000 cells of each cell line and also different fetal calf serum (FCS) concentrations: 10%, 5%, 1%, and 0% where used as variable parameters. FCS is the most widely used growth supplement for cell culture media of eukaryotic cells because of its high content of embryonic growth promoting factors and low level of antibodies. Changing the optimal concentration of FCS provided in protocols is directly proportional with changes in cell proliferation [41,42]. Results can be seen in Figure 7a, b, c, d: Absorption using different concentrations of FCS a) Of four different numbers of B164A5 cells b) Of four different numbers of B16F10 cells c) Of four different numbers of B16GMCSF cells d) Of four different numbers of B16FLT3 cells


A characterization of four B16 murine melanoma cell sublines molecular fingerprint and proliferation behavior.

Danciu C, Falamas A, Dehelean C, Soica C, Radeke H, Barbu-Tudoran L, Bojin F, Pînzaru SC, Munteanu MF - Cancer Cell Int. (2013)

(a,b,c,d): Growth curves employing different number of cells and different FCS concentrations corresponding to a) B164A5 cell line; b) B16F10 cell line; c) B16GMCSF cell line; d) B16FLT3 cell line.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3750233&req=5

Figure 7: (a,b,c,d): Growth curves employing different number of cells and different FCS concentrations corresponding to a) B164A5 cell line; b) B16F10 cell line; c) B16GMCSF cell line; d) B16FLT3 cell line.
Mentions: After doubling time was found for each cell line, MTT assay was employed in order to characterize the growth curves. Different number of cells 15 000 cells, 10 000 cells, 6000 cells, 3000 cells of each cell line and also different fetal calf serum (FCS) concentrations: 10%, 5%, 1%, and 0% where used as variable parameters. FCS is the most widely used growth supplement for cell culture media of eukaryotic cells because of its high content of embryonic growth promoting factors and low level of antibodies. Changing the optimal concentration of FCS provided in protocols is directly proportional with changes in cell proliferation [41,42]. Results can be seen in Figure 7a, b, c, d: Absorption using different concentrations of FCS a) Of four different numbers of B164A5 cells b) Of four different numbers of B16F10 cells c) Of four different numbers of B16GMCSF cells d) Of four different numbers of B16FLT3 cells

Bottom Line: SERS bands allowed the identification inside the cells of the main bio-molecular components such as: proteins, nucleic acids, and lipids.An "on and off" SERS effect was constantly present, which may be explained in terms of the employed laser power, as well as the possible different orientations of the adsorbed species in the cells in respect to the Ag nanoparticles.MTT results showed that among the four tested cell sub-lines B16 F10 is the most proliferative and B164A5 has the lower growth capacity.

View Article: PubMed Central - HTML - PubMed

Affiliation: Faculty of Pharmacy, University of Medicine and Pharmacy "Victor Babes", EftimieMurgu Square, No. 2, 300041 Timişoara, România.

ABSTRACT

Background: One of the most popular and versatile model of murine melanoma is by inoculating B16 cells in the syngeneic C57BL6J mouse strain. A characterization of different B16 modified cell sub-lines will be of real practical interest. For this aim, modern analytical tools like surface enhanced Raman spectroscopy/scattering (SERS) and MTT were employed to characterize both chemical composition and proliferation behavior of the selected cells.

Methods: High quality SERS signal was recorded from each of the four types of B16 cell sub-lines: B164A5, B16GMCSF, B16FLT3, B16F10, in order to observe the differences between a parent cell line (B164A5) and other derived B16 cell sub-lines. Cells were incubated with silver nanoparticles of 50-100 nm diameter and the nanoparticles uptake inside the cells cytoplasm was proved by transmission electron microscopy (TEM) investigations. In order to characterize proliferation, growth curves of the four B16 cell lines, using different cell numbers and FCS concentration were obtained employing the MTT proliferation assay. For correlations doubling time were calculated.

Results: SERS bands allowed the identification inside the cells of the main bio-molecular components such as: proteins, nucleic acids, and lipids. An "on and off" SERS effect was constantly present, which may be explained in terms of the employed laser power, as well as the possible different orientations of the adsorbed species in the cells in respect to the Ag nanoparticles. MTT results showed that among the four tested cell sub-lines B16 F10 is the most proliferative and B164A5 has the lower growth capacity. Regarding B16FLT3 cells and B16GMCSF cells, they present proliferation ability in between with slight slower potency for B16GMCSF cells.

Conclusion: Molecular fingerprint and proliferation behavior of four B16 melanoma cell sub-lines were elucidated by associating SERS investigations with MTT proliferation assay.

No MeSH data available.


Related in: MedlinePlus