Limits...
Food related processes in the insular cortex.

Frank S, Kullmann S, Veit R - Front Hum Neurosci (2013)

Bottom Line: Influencing factors of insular activation elicited by various foods range from calorie-content to the internal physiologic state, body mass index or eating behavior.Sensory perception of food-related stimuli including seeing, smelling, and tasting elicits increased activation in the anterior and mid-dorsal part of the insular cortex.Apart from the pure sensory gustatory processing, there is also a strong association with the rewarding/hedonic aspects of food items, which is reflected in higher insular activity and stronger connections to other reward-related areas.

View Article: PubMed Central - PubMed

Affiliation: 1Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany ; 2fMEG Center, University of Tübingen Tübingen, Germany.

ABSTRACT
The insular cortex is a multimodal brain region with regional cytoarchitectonic differences indicating various functional specializations. As a multisensory neural node, the insular cortex integrates perception, emotion, interoceptive awareness, cognition, and gustation. Regarding the latter, predominantly the anterior part of the insular cortex is regarded as the primary taste cortex. In this review, we will specifically focus on the involvement of the insula in food processing and on multimodal integration of food-related items. Influencing factors of insular activation elicited by various foods range from calorie-content to the internal physiologic state, body mass index or eating behavior. Sensory perception of food-related stimuli including seeing, smelling, and tasting elicits increased activation in the anterior and mid-dorsal part of the insular cortex. Apart from the pure sensory gustatory processing, there is also a strong association with the rewarding/hedonic aspects of food items, which is reflected in higher insular activity and stronger connections to other reward-related areas. Interestingly, the processing of food items has been found to elicit different insular activation in lean compared to obese subjects and in patients suffering from an eating disorder (anorexia nervosa (AN), bulimia nervosa (BN)). The knowledge of functional differences in the insular cortex opens up the opportunity for possible noninvasive treatment approaches for obesity and eating disorders. To target brain functions directly, real-time functional magnetic resonance imaging neurofeedback offers a state-of-the-art tool to learn to control the anterior insular cortex activity voluntarily. First evidence indicates that obese adults have an enhanced ability to regulate the anterior insular cortex.

No MeSH data available.


Related in: MedlinePlus

Scheme of the contribution of the insular cortex in food-related processes. Especially the anterior and mid-dorsal part of the insular cortex respond to (A) high-caloric food cues and show (B) increased activation in obese subjects and (C) in a hungry condition after stimulation with food items. (D) Lean subjects showed higher resting state connectivity pattern in the salience network, including the insular cortex. (E) Also patients suffering from an eating disorder show enhanced activation in this region. (F) Obese subjects’ regulation ability during an fMRI based neurofeedback paradigm is higher compared to lean subjects.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3750209&req=5

Figure 1: Scheme of the contribution of the insular cortex in food-related processes. Especially the anterior and mid-dorsal part of the insular cortex respond to (A) high-caloric food cues and show (B) increased activation in obese subjects and (C) in a hungry condition after stimulation with food items. (D) Lean subjects showed higher resting state connectivity pattern in the salience network, including the insular cortex. (E) Also patients suffering from an eating disorder show enhanced activation in this region. (F) Obese subjects’ regulation ability during an fMRI based neurofeedback paradigm is higher compared to lean subjects.

Mentions: Several neuroimaging studies emphasized the functional contribution of the anterior insula in gustatory perception (Small et al., 2003; Veldhuizen et al., 2011; Figure 1A), which is represented in the processing of visually presented (Porubska et al., 2006; Frank et al., 2010), tasted or smelled food stimuli (De Araujo et al., 2003), and also in food craving (Pelchat, 1997; Pelchat et al., 2004). Eating per se is a multimodal experience, including taste, olfaction, smell, and somatosensory inputs (De Araujo and Simon, 2009). As part of the primary taste and primary olfactory cortex (Rolls, 2006; Small, 2010), the anterior insula is also highly responsive to different flavors (Rolls, 2005; Small, 2012; Small and Green, 2012). Sensory food-related inputs are combined in the anterior insula (Small, 2012), resulting in increased activation of this region after stimulation with a specific flavor (Small et al., 1999). Small and Prescott (2005) describe overlapping activation in the anterior insula after independent stimulation with taste and odor cues. Besides the taste component, transferred from the taste buds on the tongue to the primary taste cortex, the aroma of food is also experienced olfactorily via the retronasal route (Ruijschop et al., 2009; Small and Green, 2012).


Food related processes in the insular cortex.

Frank S, Kullmann S, Veit R - Front Hum Neurosci (2013)

Scheme of the contribution of the insular cortex in food-related processes. Especially the anterior and mid-dorsal part of the insular cortex respond to (A) high-caloric food cues and show (B) increased activation in obese subjects and (C) in a hungry condition after stimulation with food items. (D) Lean subjects showed higher resting state connectivity pattern in the salience network, including the insular cortex. (E) Also patients suffering from an eating disorder show enhanced activation in this region. (F) Obese subjects’ regulation ability during an fMRI based neurofeedback paradigm is higher compared to lean subjects.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3750209&req=5

Figure 1: Scheme of the contribution of the insular cortex in food-related processes. Especially the anterior and mid-dorsal part of the insular cortex respond to (A) high-caloric food cues and show (B) increased activation in obese subjects and (C) in a hungry condition after stimulation with food items. (D) Lean subjects showed higher resting state connectivity pattern in the salience network, including the insular cortex. (E) Also patients suffering from an eating disorder show enhanced activation in this region. (F) Obese subjects’ regulation ability during an fMRI based neurofeedback paradigm is higher compared to lean subjects.
Mentions: Several neuroimaging studies emphasized the functional contribution of the anterior insula in gustatory perception (Small et al., 2003; Veldhuizen et al., 2011; Figure 1A), which is represented in the processing of visually presented (Porubska et al., 2006; Frank et al., 2010), tasted or smelled food stimuli (De Araujo et al., 2003), and also in food craving (Pelchat, 1997; Pelchat et al., 2004). Eating per se is a multimodal experience, including taste, olfaction, smell, and somatosensory inputs (De Araujo and Simon, 2009). As part of the primary taste and primary olfactory cortex (Rolls, 2006; Small, 2010), the anterior insula is also highly responsive to different flavors (Rolls, 2005; Small, 2012; Small and Green, 2012). Sensory food-related inputs are combined in the anterior insula (Small, 2012), resulting in increased activation of this region after stimulation with a specific flavor (Small et al., 1999). Small and Prescott (2005) describe overlapping activation in the anterior insula after independent stimulation with taste and odor cues. Besides the taste component, transferred from the taste buds on the tongue to the primary taste cortex, the aroma of food is also experienced olfactorily via the retronasal route (Ruijschop et al., 2009; Small and Green, 2012).

Bottom Line: Influencing factors of insular activation elicited by various foods range from calorie-content to the internal physiologic state, body mass index or eating behavior.Sensory perception of food-related stimuli including seeing, smelling, and tasting elicits increased activation in the anterior and mid-dorsal part of the insular cortex.Apart from the pure sensory gustatory processing, there is also a strong association with the rewarding/hedonic aspects of food items, which is reflected in higher insular activity and stronger connections to other reward-related areas.

View Article: PubMed Central - PubMed

Affiliation: 1Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany ; 2fMEG Center, University of Tübingen Tübingen, Germany.

ABSTRACT
The insular cortex is a multimodal brain region with regional cytoarchitectonic differences indicating various functional specializations. As a multisensory neural node, the insular cortex integrates perception, emotion, interoceptive awareness, cognition, and gustation. Regarding the latter, predominantly the anterior part of the insular cortex is regarded as the primary taste cortex. In this review, we will specifically focus on the involvement of the insula in food processing and on multimodal integration of food-related items. Influencing factors of insular activation elicited by various foods range from calorie-content to the internal physiologic state, body mass index or eating behavior. Sensory perception of food-related stimuli including seeing, smelling, and tasting elicits increased activation in the anterior and mid-dorsal part of the insular cortex. Apart from the pure sensory gustatory processing, there is also a strong association with the rewarding/hedonic aspects of food items, which is reflected in higher insular activity and stronger connections to other reward-related areas. Interestingly, the processing of food items has been found to elicit different insular activation in lean compared to obese subjects and in patients suffering from an eating disorder (anorexia nervosa (AN), bulimia nervosa (BN)). The knowledge of functional differences in the insular cortex opens up the opportunity for possible noninvasive treatment approaches for obesity and eating disorders. To target brain functions directly, real-time functional magnetic resonance imaging neurofeedback offers a state-of-the-art tool to learn to control the anterior insular cortex activity voluntarily. First evidence indicates that obese adults have an enhanced ability to regulate the anterior insular cortex.

No MeSH data available.


Related in: MedlinePlus