Limits...
Mirror versus parallel bimanual reaching.

Abdollahi F, Kenyon RV, Patton JL - J Neuroeng Rehabil (2013)

Bottom Line: In a 2-by-2 study, we compared mirror vs. parallel reaching movements, and also compared veridical display to one that transforms the right hand's cursor to the opposite side, reducing the area that the visual system has to monitor.For both hands, there was also a significant interaction effect, revealing the lowest errors for parallel movements moving to two targets (p < 0.001).These results point to the expected levels of challenge for these bimanual training modes, which could be used to advise therapy choices in self-neurorehabilitation.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Background: In spite of their importance to everyday function, tasks that require both hands to work together such as lifting and carrying large objects have not been well studied and the full potential of how new technology might facilitate recovery remains unknown.

Methods: To help identify the best modes for self-teleoperated bimanual training, we used an advanced haptic/graphic environment to compare several modes of practice. In a 2-by-2 study, we compared mirror vs. parallel reaching movements, and also compared veridical display to one that transforms the right hand's cursor to the opposite side, reducing the area that the visual system has to monitor. Twenty healthy, right-handed subjects (5 in each group) practiced 200 movements. We hypothesized that parallel reaching movements would be the best performing, and attending to one visual area would reduce the task difficulty.

Results: The two-way comparison revealed that mirror movement times took an average 1.24 s longer to complete than parallel. Surprisingly, subjects' movement times moving to one target (attending to one visual area) also took an average of 1.66 s longer than subjects moving to two targets. For both hands, there was also a significant interaction effect, revealing the lowest errors for parallel movements moving to two targets (p < 0.001). This was the only group that began and maintained low errors throughout training.

Conclusion: Combined with other evidence, these results suggest that the most intuitive reaching performance can be observed with parallel movements with a veridical display (moving to two separate targets). These results point to the expected levels of challenge for these bimanual training modes, which could be used to advise therapy choices in self-neurorehabilitation.

Show MeSH

Related in: MedlinePlus

Parallel two target group is the clear winner for both movement time and error. Each column of dots represents a subject's 20 initial (lefthand) and 20 final (righthand) practice trials, with vertical lines indicating 95% confidence intervals. Change is indicated by diagonal lines (for subjects) and grey bars (group). Significance (solid lines), no significance (dash lines); subject (color).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3717099&req=5

Figure 4: Parallel two target group is the clear winner for both movement time and error. Each column of dots represents a subject's 20 initial (lefthand) and 20 final (righthand) practice trials, with vertical lines indicating 95% confidence intervals. Change is indicated by diagonal lines (for subjects) and grey bars (group). Significance (solid lines), no significance (dash lines); subject (color).

Mentions: The key findings of this study were that movement time and trajectory error were lowest for subjects reaching to two separate targets in parallel (Figure 4). Movement time was significantly lower for groups reaching in parallel (F(1,16) = 16.53, p < 0.001) and for groups reaching to two targets (F(1,16) = 8.94, p < 0.01). Trajectory errors were lowest for the parallel two-target group, indicated by a significant interaction effect between movement type and number of targets for both hands (Fright(1,16) = 130.45, p < 0.001 and Fleft(1,16) = 39.37, p < 0.001).


Mirror versus parallel bimanual reaching.

Abdollahi F, Kenyon RV, Patton JL - J Neuroeng Rehabil (2013)

Parallel two target group is the clear winner for both movement time and error. Each column of dots represents a subject's 20 initial (lefthand) and 20 final (righthand) practice trials, with vertical lines indicating 95% confidence intervals. Change is indicated by diagonal lines (for subjects) and grey bars (group). Significance (solid lines), no significance (dash lines); subject (color).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3717099&req=5

Figure 4: Parallel two target group is the clear winner for both movement time and error. Each column of dots represents a subject's 20 initial (lefthand) and 20 final (righthand) practice trials, with vertical lines indicating 95% confidence intervals. Change is indicated by diagonal lines (for subjects) and grey bars (group). Significance (solid lines), no significance (dash lines); subject (color).
Mentions: The key findings of this study were that movement time and trajectory error were lowest for subjects reaching to two separate targets in parallel (Figure 4). Movement time was significantly lower for groups reaching in parallel (F(1,16) = 16.53, p < 0.001) and for groups reaching to two targets (F(1,16) = 8.94, p < 0.01). Trajectory errors were lowest for the parallel two-target group, indicated by a significant interaction effect between movement type and number of targets for both hands (Fright(1,16) = 130.45, p < 0.001 and Fleft(1,16) = 39.37, p < 0.001).

Bottom Line: In a 2-by-2 study, we compared mirror vs. parallel reaching movements, and also compared veridical display to one that transforms the right hand's cursor to the opposite side, reducing the area that the visual system has to monitor.For both hands, there was also a significant interaction effect, revealing the lowest errors for parallel movements moving to two targets (p < 0.001).These results point to the expected levels of challenge for these bimanual training modes, which could be used to advise therapy choices in self-neurorehabilitation.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Background: In spite of their importance to everyday function, tasks that require both hands to work together such as lifting and carrying large objects have not been well studied and the full potential of how new technology might facilitate recovery remains unknown.

Methods: To help identify the best modes for self-teleoperated bimanual training, we used an advanced haptic/graphic environment to compare several modes of practice. In a 2-by-2 study, we compared mirror vs. parallel reaching movements, and also compared veridical display to one that transforms the right hand's cursor to the opposite side, reducing the area that the visual system has to monitor. Twenty healthy, right-handed subjects (5 in each group) practiced 200 movements. We hypothesized that parallel reaching movements would be the best performing, and attending to one visual area would reduce the task difficulty.

Results: The two-way comparison revealed that mirror movement times took an average 1.24 s longer to complete than parallel. Surprisingly, subjects' movement times moving to one target (attending to one visual area) also took an average of 1.66 s longer than subjects moving to two targets. For both hands, there was also a significant interaction effect, revealing the lowest errors for parallel movements moving to two targets (p < 0.001). This was the only group that began and maintained low errors throughout training.

Conclusion: Combined with other evidence, these results suggest that the most intuitive reaching performance can be observed with parallel movements with a veridical display (moving to two separate targets). These results point to the expected levels of challenge for these bimanual training modes, which could be used to advise therapy choices in self-neurorehabilitation.

Show MeSH
Related in: MedlinePlus