Limits...
Peptide-biphenyl hybrid-capped AuNPs: stability and biocompatibility under cell culture conditions.

Connolly M, Pérez Y, Mann E, Herradón B, Fernández-Cruz ML, Navas JM - Nanoscale Res Lett (2013)

Bottom Line: Moreover, these AuNPs have unique biological effects on Hep G2 cells while showing low toxicity.The production of ROS along with supporting optical microscopy images suggests cellular interaction/uptake of these particular AuNPs.Future research efforts should further test this hypothesis, as such interaction/uptake is highly relevant in drug delivery systems.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña Km 7,5, Madrid 28040, Spain. yolanda.cortes@urjc.es.

ABSTRACT
In this study, we explored the biocompatibility of Au nanoparticles (NPs) capped with peptide-biphenyl hybrid (PBH) ligands containing glycine (Gly), cysteine (Cys), tyrosine (Tyr), tryptophan (Trp) and methionine (Met) amino acids in the human hepatocellular carcinoma cell line Hep G2. Five AuNPs, Au[(Gly-Tyr-Met)2B], Au[(Gly-Trp-Met)2B], Au[(Met)2B], Au[(Gly-Tyr-TrCys)2B] and Au[(TrCys)2B], were synthesised. Physico-chemical and cytotoxic properties were thoroughly studied. Transmission electron micrographs showed isolated near-spherical nanoparticles with diameters of 1.5, 1.6, 2.3, 1.8 and 2.3 nm, respectively. Dynamic light scattering evidenced the high stability of suspensions in Milli-Q water and culture medium, particularly when supplemented with serum, showing in all cases a tendency to form agglomerates with diameters approximately 200 nm. In the cytotoxicity studies, interference caused by AuNPs with some typical cytotoxicity assays was demonstrated; thus, only data obtained from the resazurin based assay were used. After 48-h incubation, only concentrations ≥50 μg/ml exhibited cytotoxicity. Such doses were also responsible for an increase in reactive oxygen species (ROS). Some differences were observed among the studied NPs. Of particular importance is the AuNPs capped with the PBH ligand (Gly-Tyr-TrCys)2B showing remarkable stability in culture medium, even in the absence of serum. Moreover, these AuNPs have unique biological effects on Hep G2 cells while showing low toxicity. The production of ROS along with supporting optical microscopy images suggests cellular interaction/uptake of these particular AuNPs. Future research efforts should further test this hypothesis, as such interaction/uptake is highly relevant in drug delivery systems.

No MeSH data available.


Related in: MedlinePlus

TEM images of AuNPs in EMEM/S- after preparation. (a) Au[(TrCys)2B], (c) Au[(Gly-Tyr-TrCys)2B] and (e) Au[(Gly-Tyr-Met)2B], and at 24 h of incubation; (b) Au[(TrCys)2B], (d) Au[(Gly-Tyr-TrCys)2B] and (f) Au[(Gly-Tyr-Met)2B] [Scale bar (c) and (d) is 20 nm, and for all other images, scale bar is 50 nm]; asterisk and bold letters are used to signal the most stable AuNP.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3716793&req=5

Figure 7: TEM images of AuNPs in EMEM/S- after preparation. (a) Au[(TrCys)2B], (c) Au[(Gly-Tyr-TrCys)2B] and (e) Au[(Gly-Tyr-Met)2B], and at 24 h of incubation; (b) Au[(TrCys)2B], (d) Au[(Gly-Tyr-TrCys)2B] and (f) Au[(Gly-Tyr-Met)2B] [Scale bar (c) and (d) is 20 nm, and for all other images, scale bar is 50 nm]; asterisk and bold letters are used to signal the most stable AuNP.

Mentions: Transmission electron micrographs were taken of the PBH-capped AuNPs after suspension in EMEM/S- medium (T0) and after 24 h of incubation (T24) under assay conditions (37°C/5% CO2). Representative TEM images of Au[(Gly-Tyr-TrCys)2B], Au[(TrCys)2B] and Au[(Gly-Tyr-Met)2B] are shown in Figure 7. Figure 7a,c shows TEM micrographs of Au[(TrCys)2B] and Au[(Gly-Tyr-TrCys)2B] directly after suspension, respectively. Both images reveal isolated NPs with the same size (1 to 3 nm) in the absence of medium. After 24 h of incubation, Au[(Gly-Tyr-TrCys)2B] and Au[(TrCys)2B] (Figure 7b,d) showed agglomeration and a clear interaction of individual NPs with medium components, as determined from TEM images. By comparing the micrographs, the highest degree of agglomeration in the case of Au[(Gly-Tyr-Met)2B] (Figure 7e,f) after suspension in medium can be appreciated. Therefore, one would expect the surface chemistry of these NPs upon interaction with media not to be the same as for the NPs initially prepared [53].


Peptide-biphenyl hybrid-capped AuNPs: stability and biocompatibility under cell culture conditions.

Connolly M, Pérez Y, Mann E, Herradón B, Fernández-Cruz ML, Navas JM - Nanoscale Res Lett (2013)

TEM images of AuNPs in EMEM/S- after preparation. (a) Au[(TrCys)2B], (c) Au[(Gly-Tyr-TrCys)2B] and (e) Au[(Gly-Tyr-Met)2B], and at 24 h of incubation; (b) Au[(TrCys)2B], (d) Au[(Gly-Tyr-TrCys)2B] and (f) Au[(Gly-Tyr-Met)2B] [Scale bar (c) and (d) is 20 nm, and for all other images, scale bar is 50 nm]; asterisk and bold letters are used to signal the most stable AuNP.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3716793&req=5

Figure 7: TEM images of AuNPs in EMEM/S- after preparation. (a) Au[(TrCys)2B], (c) Au[(Gly-Tyr-TrCys)2B] and (e) Au[(Gly-Tyr-Met)2B], and at 24 h of incubation; (b) Au[(TrCys)2B], (d) Au[(Gly-Tyr-TrCys)2B] and (f) Au[(Gly-Tyr-Met)2B] [Scale bar (c) and (d) is 20 nm, and for all other images, scale bar is 50 nm]; asterisk and bold letters are used to signal the most stable AuNP.
Mentions: Transmission electron micrographs were taken of the PBH-capped AuNPs after suspension in EMEM/S- medium (T0) and after 24 h of incubation (T24) under assay conditions (37°C/5% CO2). Representative TEM images of Au[(Gly-Tyr-TrCys)2B], Au[(TrCys)2B] and Au[(Gly-Tyr-Met)2B] are shown in Figure 7. Figure 7a,c shows TEM micrographs of Au[(TrCys)2B] and Au[(Gly-Tyr-TrCys)2B] directly after suspension, respectively. Both images reveal isolated NPs with the same size (1 to 3 nm) in the absence of medium. After 24 h of incubation, Au[(Gly-Tyr-TrCys)2B] and Au[(TrCys)2B] (Figure 7b,d) showed agglomeration and a clear interaction of individual NPs with medium components, as determined from TEM images. By comparing the micrographs, the highest degree of agglomeration in the case of Au[(Gly-Tyr-Met)2B] (Figure 7e,f) after suspension in medium can be appreciated. Therefore, one would expect the surface chemistry of these NPs upon interaction with media not to be the same as for the NPs initially prepared [53].

Bottom Line: Moreover, these AuNPs have unique biological effects on Hep G2 cells while showing low toxicity.The production of ROS along with supporting optical microscopy images suggests cellular interaction/uptake of these particular AuNPs.Future research efforts should further test this hypothesis, as such interaction/uptake is highly relevant in drug delivery systems.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña Km 7,5, Madrid 28040, Spain. yolanda.cortes@urjc.es.

ABSTRACT
In this study, we explored the biocompatibility of Au nanoparticles (NPs) capped with peptide-biphenyl hybrid (PBH) ligands containing glycine (Gly), cysteine (Cys), tyrosine (Tyr), tryptophan (Trp) and methionine (Met) amino acids in the human hepatocellular carcinoma cell line Hep G2. Five AuNPs, Au[(Gly-Tyr-Met)2B], Au[(Gly-Trp-Met)2B], Au[(Met)2B], Au[(Gly-Tyr-TrCys)2B] and Au[(TrCys)2B], were synthesised. Physico-chemical and cytotoxic properties were thoroughly studied. Transmission electron micrographs showed isolated near-spherical nanoparticles with diameters of 1.5, 1.6, 2.3, 1.8 and 2.3 nm, respectively. Dynamic light scattering evidenced the high stability of suspensions in Milli-Q water and culture medium, particularly when supplemented with serum, showing in all cases a tendency to form agglomerates with diameters approximately 200 nm. In the cytotoxicity studies, interference caused by AuNPs with some typical cytotoxicity assays was demonstrated; thus, only data obtained from the resazurin based assay were used. After 48-h incubation, only concentrations ≥50 μg/ml exhibited cytotoxicity. Such doses were also responsible for an increase in reactive oxygen species (ROS). Some differences were observed among the studied NPs. Of particular importance is the AuNPs capped with the PBH ligand (Gly-Tyr-TrCys)2B showing remarkable stability in culture medium, even in the absence of serum. Moreover, these AuNPs have unique biological effects on Hep G2 cells while showing low toxicity. The production of ROS along with supporting optical microscopy images suggests cellular interaction/uptake of these particular AuNPs. Future research efforts should further test this hypothesis, as such interaction/uptake is highly relevant in drug delivery systems.

No MeSH data available.


Related in: MedlinePlus