Limits...
D-isoascorbyl palmitate: lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology.

Sun WJ, Zhao HX, Cui FJ, Li YH, Yu SL, Zhou Q, Qian JY, Dong Y - Chem Cent J (2013)

Bottom Line: The structural information of synthesized product was clarified using LC-ESI-MS, FT-IR, 1H and 13C NMR analysis, and process parameters for high yield of D-isoascorbyl palmitate were optimized by using One-factor-at-a-time experiments and response surface methodology (RSM).The synthesized product had the purity of 95% and its structural characteristics were confirmed as isoascorbyl palmitate by LC-ESI-MS, FT-IR, 1H, and 13C NMR analysis.Results from "one-factor-at-a-time" experiments indicated that the enzyme load, reaction temperature and D-isoascorbic-to-palmitic acid molar ratio had a significant effect on the D-isoascorbyl palmitate conversion rate. 95.32% of conversion rate was obtained by using response surface methodology (RSM) under the the optimized condition: enzyme load of 20% (w/w), reaction temperature of 53°C and D- isoascorbic-to-palmitic acid molar ratio of 1:4 when the reaction parameters were set as: acetone 20 mL, 40 g/L of molecular sieves content, 200 rpm speed for 24-h reaction time.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P,R, China. sunwenjing1919@163.com.

ABSTRACT

Background: Isoascorbic acid is a stereoisomer of L-ascorbic acid, and widely used as a food antioxidant. However, its highly hydrophilic behavior prevents its application in cosmetics or fats and oils-based foods. To overcome this problem, D-isoascorbyl palmitate was synthesized in the present study for improving the isoascorbic acid's oil solubility with an immobilized lipase in organic media. The structural information of synthesized product was clarified using LC-ESI-MS, FT-IR, 1H and 13C NMR analysis, and process parameters for high yield of D-isoascorbyl palmitate were optimized by using One-factor-at-a-time experiments and response surface methodology (RSM).

Results: The synthesized product had the purity of 95% and its structural characteristics were confirmed as isoascorbyl palmitate by LC-ESI-MS, FT-IR, 1H, and 13C NMR analysis. Results from "one-factor-at-a-time" experiments indicated that the enzyme load, reaction temperature and D-isoascorbic-to-palmitic acid molar ratio had a significant effect on the D-isoascorbyl palmitate conversion rate. 95.32% of conversion rate was obtained by using response surface methodology (RSM) under the the optimized condition: enzyme load of 20% (w/w), reaction temperature of 53°C and D- isoascorbic-to-palmitic acid molar ratio of 1:4 when the reaction parameters were set as: acetone 20 mL, 40 g/L of molecular sieves content, 200 rpm speed for 24-h reaction time.

Conclusion: The findings of this study can become a reference for developing industrial processes for the preparation of isoascorbic acid ester, which might be used in food additives, cosmetic formulations and for the synthesis of other isoascorbic acid derivatives.

No MeSH data available.


Plot of predicted and observed conversion rate (%) of D-isoascorbyl palmitate.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3716706&req=5

Figure 10: Plot of predicted and observed conversion rate (%) of D-isoascorbyl palmitate.

Mentions: Where Y is the response variable (isoascorbyl palmitate conversion rate, %), and X1, X2 and X3 are enzyme load, temperature and molar ratio of D-isoascorbic to palmitic acid, respectively. Figure 10 shows the observed and predicted conversion rate determined by the model Eq. (2) which indicated an excellent agreement between actual and predicted responses.


D-isoascorbyl palmitate: lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology.

Sun WJ, Zhao HX, Cui FJ, Li YH, Yu SL, Zhou Q, Qian JY, Dong Y - Chem Cent J (2013)

Plot of predicted and observed conversion rate (%) of D-isoascorbyl palmitate.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3716706&req=5

Figure 10: Plot of predicted and observed conversion rate (%) of D-isoascorbyl palmitate.
Mentions: Where Y is the response variable (isoascorbyl palmitate conversion rate, %), and X1, X2 and X3 are enzyme load, temperature and molar ratio of D-isoascorbic to palmitic acid, respectively. Figure 10 shows the observed and predicted conversion rate determined by the model Eq. (2) which indicated an excellent agreement between actual and predicted responses.

Bottom Line: The structural information of synthesized product was clarified using LC-ESI-MS, FT-IR, 1H and 13C NMR analysis, and process parameters for high yield of D-isoascorbyl palmitate were optimized by using One-factor-at-a-time experiments and response surface methodology (RSM).The synthesized product had the purity of 95% and its structural characteristics were confirmed as isoascorbyl palmitate by LC-ESI-MS, FT-IR, 1H, and 13C NMR analysis.Results from "one-factor-at-a-time" experiments indicated that the enzyme load, reaction temperature and D-isoascorbic-to-palmitic acid molar ratio had a significant effect on the D-isoascorbyl palmitate conversion rate. 95.32% of conversion rate was obtained by using response surface methodology (RSM) under the the optimized condition: enzyme load of 20% (w/w), reaction temperature of 53°C and D- isoascorbic-to-palmitic acid molar ratio of 1:4 when the reaction parameters were set as: acetone 20 mL, 40 g/L of molecular sieves content, 200 rpm speed for 24-h reaction time.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P,R, China. sunwenjing1919@163.com.

ABSTRACT

Background: Isoascorbic acid is a stereoisomer of L-ascorbic acid, and widely used as a food antioxidant. However, its highly hydrophilic behavior prevents its application in cosmetics or fats and oils-based foods. To overcome this problem, D-isoascorbyl palmitate was synthesized in the present study for improving the isoascorbic acid's oil solubility with an immobilized lipase in organic media. The structural information of synthesized product was clarified using LC-ESI-MS, FT-IR, 1H and 13C NMR analysis, and process parameters for high yield of D-isoascorbyl palmitate were optimized by using One-factor-at-a-time experiments and response surface methodology (RSM).

Results: The synthesized product had the purity of 95% and its structural characteristics were confirmed as isoascorbyl palmitate by LC-ESI-MS, FT-IR, 1H, and 13C NMR analysis. Results from "one-factor-at-a-time" experiments indicated that the enzyme load, reaction temperature and D-isoascorbic-to-palmitic acid molar ratio had a significant effect on the D-isoascorbyl palmitate conversion rate. 95.32% of conversion rate was obtained by using response surface methodology (RSM) under the the optimized condition: enzyme load of 20% (w/w), reaction temperature of 53°C and D- isoascorbic-to-palmitic acid molar ratio of 1:4 when the reaction parameters were set as: acetone 20 mL, 40 g/L of molecular sieves content, 200 rpm speed for 24-h reaction time.

Conclusion: The findings of this study can become a reference for developing industrial processes for the preparation of isoascorbic acid ester, which might be used in food additives, cosmetic formulations and for the synthesis of other isoascorbic acid derivatives.

No MeSH data available.