Limits...
Songbirds and humans apply different strategies in a sound sequence discrimination task.

Seki Y, Suzuki K, Osawa AM, Okanoya K - Front Psychol (2013)

Bottom Line: There was no evidence that the birds successfully extracted the abstract rule (i.e., AAB and ABB); MMF-GO subjects did not produce a GO response for FFM and vice versa.The results and questionnaires revealed that participants extracted the abstract rule, and most of them employed it to discriminate the sequences.Our results showed that the human participants applied the abstract rule in the task even without instruction but Bengalese finches did not, thereby reconfirming that humans have to extract abstract rules from sound sequences that is distinct from non-human animals.

View Article: PubMed Central - PubMed

Affiliation: ERATO Okanoya Emotional Information Project, Japan Science and Technology Agency Wako, Japan ; Laboratory for Biolinguistics, Brain Science Institute, RIKEN Wako, Japan.

ABSTRACT
The abilities of animals and humans to extract rules from sound sequences have previously been compared using observation of spontaneous responses and conditioning techniques. However, the results were inconsistently interpreted across studies possibly due to methodological and/or species differences. Therefore, we examined the strategies for discrimination of sound sequences in Bengalese finches and humans using the same protocol. Birds were trained on a GO/NOGO task to discriminate between two categories of sound stimulus generated based on an "AAB" or "ABB" rule. The sound elements used were taken from a variety of male (M) and female (F) calls, such that the sequences could be represented as MMF and MFF. In test sessions, FFM and FMM sequences, which were never presented in the training sessions but conformed to the rule, were presented as probe stimuli. The results suggested two discriminative strategies were being applied: (1) memorizing sound patterns of either GO or NOGO stimuli and generating the appropriate responses for only those sounds; and (2) using the repeated element as a cue. There was no evidence that the birds successfully extracted the abstract rule (i.e., AAB and ABB); MMF-GO subjects did not produce a GO response for FFM and vice versa. Next we examined whether those strategies were also applicable for human participants on the same task. The results and questionnaires revealed that participants extracted the abstract rule, and most of them employed it to discriminate the sequences. This strategy was never observed in bird subjects, although some participants used strategies similar to the birds when responding to the probe stimuli. Our results showed that the human participants applied the abstract rule in the task even without instruction but Bengalese finches did not, thereby reconfirming that humans have to extract abstract rules from sound sequences that is distinct from non-human animals.

No MeSH data available.


Related in: MedlinePlus

(Upper panel) Examples of the spectrogram of the sound stimuli. Left; Two calls from a female and a call from a male. Right; Two calls from another female and a call from another male. (lower panel). Scatter plots showing the similarity of the acoustic spectral patterns of male calls and female calls.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3713397&req=5

Figure 1: (Upper panel) Examples of the spectrogram of the sound stimuli. Left; Two calls from a female and a call from a male. Right; Two calls from another female and a call from another male. (lower panel). Scatter plots showing the similarity of the acoustic spectral patterns of male calls and female calls.

Mentions: Distance calls of 15 adult male (M1–M15) and 15 adult female (F1–F15) Bengalese finches recorded in the sound attenuated box using Sound Analysis Pro (Tchernichovski et al., 2000) and digitized as.wav files (44.1 kHz, 16-bit) were stored as the stimulus database. The peak amplitude of each call (before making sound sequences) was adjusted to approximately 70 db SPL at the location of the bird's head. Those sounds were combined to create various stimuli: AAB (i.e., MMF or FFM) and ABB (MFF or FMM) sound sequences (how to choose the call sounds is described in the Procedures section). In each sequence, AA sequence was created from the same sound as well as each BB sequence (e.g., M1M1F5, F3M2M2). The inter-sound-interval was 100 ms in both A-B transitions and A-A/B-B repetitions. Examples of the sound spectrogram of the stimulus series were shown in upper panels of Figure 1. A previous study showed the difference between male and female calls was salient enough for the discrimination in Bengalese finches and such differences of the acoustic pattern were clearly appeared on the sound spectrograms (Okanoya and Kimura, 1993). In this study, we calculated the cross-correlation values of sound spectrograms among the 30 calls in a round-robin style (210 comparisons for within sex, 225 comparisons for inter-sexes). The value of within-sex was significantly larger than that of inter-sexes (W = 2931, p < 0.0001, Wilcoxon rank-sum test; lower panel of Figure 1 shows the result of a multi-dimensional scaling created from the cross-correlation values).


Songbirds and humans apply different strategies in a sound sequence discrimination task.

Seki Y, Suzuki K, Osawa AM, Okanoya K - Front Psychol (2013)

(Upper panel) Examples of the spectrogram of the sound stimuli. Left; Two calls from a female and a call from a male. Right; Two calls from another female and a call from another male. (lower panel). Scatter plots showing the similarity of the acoustic spectral patterns of male calls and female calls.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3713397&req=5

Figure 1: (Upper panel) Examples of the spectrogram of the sound stimuli. Left; Two calls from a female and a call from a male. Right; Two calls from another female and a call from another male. (lower panel). Scatter plots showing the similarity of the acoustic spectral patterns of male calls and female calls.
Mentions: Distance calls of 15 adult male (M1–M15) and 15 adult female (F1–F15) Bengalese finches recorded in the sound attenuated box using Sound Analysis Pro (Tchernichovski et al., 2000) and digitized as.wav files (44.1 kHz, 16-bit) were stored as the stimulus database. The peak amplitude of each call (before making sound sequences) was adjusted to approximately 70 db SPL at the location of the bird's head. Those sounds were combined to create various stimuli: AAB (i.e., MMF or FFM) and ABB (MFF or FMM) sound sequences (how to choose the call sounds is described in the Procedures section). In each sequence, AA sequence was created from the same sound as well as each BB sequence (e.g., M1M1F5, F3M2M2). The inter-sound-interval was 100 ms in both A-B transitions and A-A/B-B repetitions. Examples of the sound spectrogram of the stimulus series were shown in upper panels of Figure 1. A previous study showed the difference between male and female calls was salient enough for the discrimination in Bengalese finches and such differences of the acoustic pattern were clearly appeared on the sound spectrograms (Okanoya and Kimura, 1993). In this study, we calculated the cross-correlation values of sound spectrograms among the 30 calls in a round-robin style (210 comparisons for within sex, 225 comparisons for inter-sexes). The value of within-sex was significantly larger than that of inter-sexes (W = 2931, p < 0.0001, Wilcoxon rank-sum test; lower panel of Figure 1 shows the result of a multi-dimensional scaling created from the cross-correlation values).

Bottom Line: There was no evidence that the birds successfully extracted the abstract rule (i.e., AAB and ABB); MMF-GO subjects did not produce a GO response for FFM and vice versa.The results and questionnaires revealed that participants extracted the abstract rule, and most of them employed it to discriminate the sequences.Our results showed that the human participants applied the abstract rule in the task even without instruction but Bengalese finches did not, thereby reconfirming that humans have to extract abstract rules from sound sequences that is distinct from non-human animals.

View Article: PubMed Central - PubMed

Affiliation: ERATO Okanoya Emotional Information Project, Japan Science and Technology Agency Wako, Japan ; Laboratory for Biolinguistics, Brain Science Institute, RIKEN Wako, Japan.

ABSTRACT
The abilities of animals and humans to extract rules from sound sequences have previously been compared using observation of spontaneous responses and conditioning techniques. However, the results were inconsistently interpreted across studies possibly due to methodological and/or species differences. Therefore, we examined the strategies for discrimination of sound sequences in Bengalese finches and humans using the same protocol. Birds were trained on a GO/NOGO task to discriminate between two categories of sound stimulus generated based on an "AAB" or "ABB" rule. The sound elements used were taken from a variety of male (M) and female (F) calls, such that the sequences could be represented as MMF and MFF. In test sessions, FFM and FMM sequences, which were never presented in the training sessions but conformed to the rule, were presented as probe stimuli. The results suggested two discriminative strategies were being applied: (1) memorizing sound patterns of either GO or NOGO stimuli and generating the appropriate responses for only those sounds; and (2) using the repeated element as a cue. There was no evidence that the birds successfully extracted the abstract rule (i.e., AAB and ABB); MMF-GO subjects did not produce a GO response for FFM and vice versa. Next we examined whether those strategies were also applicable for human participants on the same task. The results and questionnaires revealed that participants extracted the abstract rule, and most of them employed it to discriminate the sequences. This strategy was never observed in bird subjects, although some participants used strategies similar to the birds when responding to the probe stimuli. Our results showed that the human participants applied the abstract rule in the task even without instruction but Bengalese finches did not, thereby reconfirming that humans have to extract abstract rules from sound sequences that is distinct from non-human animals.

No MeSH data available.


Related in: MedlinePlus