Limits...
Membrane potential and cancer progression.

Yang M, Brackenbury WJ - Front Physiol (2013)

Bottom Line: Therefore, in the context of cancer, membrane depolarization might be important for the emergence and maintenance of cancer stem cells (CSCs), giving rise to sustained tumor growth.This review aims to provide a broad understanding of the Vm as a bioelectrical signal in cancer cells by examining several key types of ion channels that contribute to its regulation.The mechanisms by which Vm regulates cancer cell proliferation, migration, and differentiation will be discussed.

View Article: PubMed Central - PubMed

Affiliation: Department of Biology, University of York York, UK.

ABSTRACT
Membrane potential (Vm ), the voltage across the plasma membrane, arises because of the presence of different ion channels/transporters with specific ion selectivity and permeability. Vm is a key biophysical signal in non-excitable cells, modulating important cellular activities, such as proliferation and differentiation. Therefore, the multiplicities of various ion channels/transporters expressed on different cells are finely tuned in order to regulate the Vm . It is well-established that cancer cells possess distinct bioelectrical properties. Notably, electrophysiological analyses in many cancer cell types have revealed a depolarized Vm that favors cell proliferation. Ion channels/transporters control cell volume and migration, and emerging data also suggest that the level of Vm has functional roles in cancer cell migration. In addition, hyperpolarization is necessary for stem cell differentiation. For example, both osteogenesis and adipogenesis are hindered in human mesenchymal stem cells (hMSCs) under depolarizing conditions. Therefore, in the context of cancer, membrane depolarization might be important for the emergence and maintenance of cancer stem cells (CSCs), giving rise to sustained tumor growth. This review aims to provide a broad understanding of the Vm as a bioelectrical signal in cancer cells by examining several key types of ion channels that contribute to its regulation. The mechanisms by which Vm regulates cancer cell proliferation, migration, and differentiation will be discussed. In the long term, Vm might be a valuable clinical marker for tumor detection with prognostic value, and could even be artificially modified in order to inhibit tumor growth and metastasis.

No MeSH data available.


Related in: MedlinePlus

Vm in normal stem cell (SC) differentiation and hypothesized role for Vm in cancer stem cells (CSCs). Depolarized Vm is needed during the maintenance of SCs. SC undergoes asymmetric division where it produces one copy of itself and one progeny that later differentiate into mature cells. The maturation requires Vm hyperpolarization (Sundelacruz et al., 2008). However, CSCs frequently undergo symmetric division, in which one CSC divides into two identical CSC progenies (Wicha et al., 2006). Sustained Vm depolarization may help to maintain the increasing CSCs in an undifferentiated state. Proliferation of CSCs then increases cancer malignancy.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3713347&req=5

Figure 5: Vm in normal stem cell (SC) differentiation and hypothesized role for Vm in cancer stem cells (CSCs). Depolarized Vm is needed during the maintenance of SCs. SC undergoes asymmetric division where it produces one copy of itself and one progeny that later differentiate into mature cells. The maturation requires Vm hyperpolarization (Sundelacruz et al., 2008). However, CSCs frequently undergo symmetric division, in which one CSC divides into two identical CSC progenies (Wicha et al., 2006). Sustained Vm depolarization may help to maintain the increasing CSCs in an undifferentiated state. Proliferation of CSCs then increases cancer malignancy.

Mentions: Stem cells and cancer cells share similar properties, such as the ability to differentiate and self-renew, increased membrane transporter activity and the ability to migrate and metastasize (Wicha et al., 2006). The cancer stem cell (CSC) hypothesis contains two key concepts: (1) cancers arise from dysregulated transformation of normal tissue stem cells or progenitor cells, and (2) cellular components that display stem cell properties can lead to cancer progression (Wicha et al., 2006). In contrast to normal, regulated asymmetric division of stem cells during tissue homeostasis, where a stem cell produces one copy of itself and one cell that later differentiates into a mature cell, the dysregulation of transformed CSCs during tumorigenesis involves “symmetric division” in which each malign CSC generates two identical daughter cells (giving rise to either proliferation or differentiation), which significantly expands the malign stem cell reservoir (Figure 5) (Liu et al., 2005).


Membrane potential and cancer progression.

Yang M, Brackenbury WJ - Front Physiol (2013)

Vm in normal stem cell (SC) differentiation and hypothesized role for Vm in cancer stem cells (CSCs). Depolarized Vm is needed during the maintenance of SCs. SC undergoes asymmetric division where it produces one copy of itself and one progeny that later differentiate into mature cells. The maturation requires Vm hyperpolarization (Sundelacruz et al., 2008). However, CSCs frequently undergo symmetric division, in which one CSC divides into two identical CSC progenies (Wicha et al., 2006). Sustained Vm depolarization may help to maintain the increasing CSCs in an undifferentiated state. Proliferation of CSCs then increases cancer malignancy.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3713347&req=5

Figure 5: Vm in normal stem cell (SC) differentiation and hypothesized role for Vm in cancer stem cells (CSCs). Depolarized Vm is needed during the maintenance of SCs. SC undergoes asymmetric division where it produces one copy of itself and one progeny that later differentiate into mature cells. The maturation requires Vm hyperpolarization (Sundelacruz et al., 2008). However, CSCs frequently undergo symmetric division, in which one CSC divides into two identical CSC progenies (Wicha et al., 2006). Sustained Vm depolarization may help to maintain the increasing CSCs in an undifferentiated state. Proliferation of CSCs then increases cancer malignancy.
Mentions: Stem cells and cancer cells share similar properties, such as the ability to differentiate and self-renew, increased membrane transporter activity and the ability to migrate and metastasize (Wicha et al., 2006). The cancer stem cell (CSC) hypothesis contains two key concepts: (1) cancers arise from dysregulated transformation of normal tissue stem cells or progenitor cells, and (2) cellular components that display stem cell properties can lead to cancer progression (Wicha et al., 2006). In contrast to normal, regulated asymmetric division of stem cells during tissue homeostasis, where a stem cell produces one copy of itself and one cell that later differentiates into a mature cell, the dysregulation of transformed CSCs during tumorigenesis involves “symmetric division” in which each malign CSC generates two identical daughter cells (giving rise to either proliferation or differentiation), which significantly expands the malign stem cell reservoir (Figure 5) (Liu et al., 2005).

Bottom Line: Therefore, in the context of cancer, membrane depolarization might be important for the emergence and maintenance of cancer stem cells (CSCs), giving rise to sustained tumor growth.This review aims to provide a broad understanding of the Vm as a bioelectrical signal in cancer cells by examining several key types of ion channels that contribute to its regulation.The mechanisms by which Vm regulates cancer cell proliferation, migration, and differentiation will be discussed.

View Article: PubMed Central - PubMed

Affiliation: Department of Biology, University of York York, UK.

ABSTRACT
Membrane potential (Vm ), the voltage across the plasma membrane, arises because of the presence of different ion channels/transporters with specific ion selectivity and permeability. Vm is a key biophysical signal in non-excitable cells, modulating important cellular activities, such as proliferation and differentiation. Therefore, the multiplicities of various ion channels/transporters expressed on different cells are finely tuned in order to regulate the Vm . It is well-established that cancer cells possess distinct bioelectrical properties. Notably, electrophysiological analyses in many cancer cell types have revealed a depolarized Vm that favors cell proliferation. Ion channels/transporters control cell volume and migration, and emerging data also suggest that the level of Vm has functional roles in cancer cell migration. In addition, hyperpolarization is necessary for stem cell differentiation. For example, both osteogenesis and adipogenesis are hindered in human mesenchymal stem cells (hMSCs) under depolarizing conditions. Therefore, in the context of cancer, membrane depolarization might be important for the emergence and maintenance of cancer stem cells (CSCs), giving rise to sustained tumor growth. This review aims to provide a broad understanding of the Vm as a bioelectrical signal in cancer cells by examining several key types of ion channels that contribute to its regulation. The mechanisms by which Vm regulates cancer cell proliferation, migration, and differentiation will be discussed. In the long term, Vm might be a valuable clinical marker for tumor detection with prognostic value, and could even be artificially modified in order to inhibit tumor growth and metastasis.

No MeSH data available.


Related in: MedlinePlus