Limits...
Effects of seasonal, ontogenetic, and genetic factors on lifespan of male and female progeny of Arvicola amphibius.

Nazarova GG - Front Genet (2013)

Bottom Line: Maternal factors had a differential effect on males and females with respect to lifespan.Male lifespan correlated negatively with maternal age, parity, and litter size, whereas female lifespan did not correlate with these characteristics.No statistically significant correlation was found for lifespan between sons and mothers, sons and fathers, and daughters and fathers.

View Article: PubMed Central - PubMed

Affiliation: Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences Novosibirsk, Russia.

ABSTRACT
The water vole (Arvicola amphibius) in the forest-steppe of West Siberia is known to have wide fluctuations in abundance. These fluctuations are accompanied by changes in birth and death rates, sex-age structure of the population, and individual morphophysiological and behavioral characteristics of the animals. Survival of the animals depends on season, phase of population cycle, and sex. Based on the data of long-term captive breeding of water voles, the maximal lifespan of males was found to be 1188 days and that of females, 1108 days. There were no differences between the sexes in mean lifespan. The probability of living 2 years or longer was 0.21. Individuals who began breeding at an older age had a significantly longer lifespan and produced more offspring. The survival curves of the spring-born animals were steeper than of those summer-/autumn-born. Maternal factors had a differential effect on males and females with respect to lifespan. Male lifespan correlated negatively with maternal age, parity, and litter size, whereas female lifespan did not correlate with these characteristics. To estimate heritability, parent-offspring correlations of lifespan were calculated, as well as full-sib intraclass correlations. No statistically significant correlation was found for lifespan between sons and mothers, sons and fathers, and daughters and fathers. Daughters' lifespan correlated positively with maternal lifespan (r = 0.21, p < 0.001). Female full-sibs and male full-sibs had the same intraclass correlations, 0.22, p < 0.001.

No MeSH data available.


Related in: MedlinePlus

Correlations between lifespan and reproductive characteristics of males and females. Upper row—females (A) age at first mating; (B) total no. of pups born; (C) percentage of male pups). Lower row—males (D) age at first mating; (E) total no. of pups born; (F) percentage of male pups.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3687140&req=5

Figure 2: Correlations between lifespan and reproductive characteristics of males and females. Upper row—females (A) age at first mating; (B) total no. of pups born; (C) percentage of male pups). Lower row—males (D) age at first mating; (E) total no. of pups born; (F) percentage of male pups.

Mentions: The correlation between lifespan and reproductive characteristics (age at first mating, number of pups born throughout life, and offspring sex ratio (% male pups) in all litters are shown in Figure 2. Spearman rank correlation was performed on uncensored data only. The results indicated that individuals who began breeding at an older age had a significantly longer lifespan. Lifespan of both males and females correlated positively with the number of pups born throughout life. However, females who had more sons in progeny had significantly shorter lifespan.


Effects of seasonal, ontogenetic, and genetic factors on lifespan of male and female progeny of Arvicola amphibius.

Nazarova GG - Front Genet (2013)

Correlations between lifespan and reproductive characteristics of males and females. Upper row—females (A) age at first mating; (B) total no. of pups born; (C) percentage of male pups). Lower row—males (D) age at first mating; (E) total no. of pups born; (F) percentage of male pups.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3687140&req=5

Figure 2: Correlations between lifespan and reproductive characteristics of males and females. Upper row—females (A) age at first mating; (B) total no. of pups born; (C) percentage of male pups). Lower row—males (D) age at first mating; (E) total no. of pups born; (F) percentage of male pups.
Mentions: The correlation between lifespan and reproductive characteristics (age at first mating, number of pups born throughout life, and offspring sex ratio (% male pups) in all litters are shown in Figure 2. Spearman rank correlation was performed on uncensored data only. The results indicated that individuals who began breeding at an older age had a significantly longer lifespan. Lifespan of both males and females correlated positively with the number of pups born throughout life. However, females who had more sons in progeny had significantly shorter lifespan.

Bottom Line: Maternal factors had a differential effect on males and females with respect to lifespan.Male lifespan correlated negatively with maternal age, parity, and litter size, whereas female lifespan did not correlate with these characteristics.No statistically significant correlation was found for lifespan between sons and mothers, sons and fathers, and daughters and fathers.

View Article: PubMed Central - PubMed

Affiliation: Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences Novosibirsk, Russia.

ABSTRACT
The water vole (Arvicola amphibius) in the forest-steppe of West Siberia is known to have wide fluctuations in abundance. These fluctuations are accompanied by changes in birth and death rates, sex-age structure of the population, and individual morphophysiological and behavioral characteristics of the animals. Survival of the animals depends on season, phase of population cycle, and sex. Based on the data of long-term captive breeding of water voles, the maximal lifespan of males was found to be 1188 days and that of females, 1108 days. There were no differences between the sexes in mean lifespan. The probability of living 2 years or longer was 0.21. Individuals who began breeding at an older age had a significantly longer lifespan and produced more offspring. The survival curves of the spring-born animals were steeper than of those summer-/autumn-born. Maternal factors had a differential effect on males and females with respect to lifespan. Male lifespan correlated negatively with maternal age, parity, and litter size, whereas female lifespan did not correlate with these characteristics. To estimate heritability, parent-offspring correlations of lifespan were calculated, as well as full-sib intraclass correlations. No statistically significant correlation was found for lifespan between sons and mothers, sons and fathers, and daughters and fathers. Daughters' lifespan correlated positively with maternal lifespan (r = 0.21, p < 0.001). Female full-sibs and male full-sibs had the same intraclass correlations, 0.22, p < 0.001.

No MeSH data available.


Related in: MedlinePlus