Limits...
Nestin-Expressing Stem Cells Promote Nerve Growth in Long-Term 3-Dimensional Gelfoam®-Supported Histoculture.

Mii S, Uehara F, Yano S, Tran B, Miwa S, Hiroshima Y, Amoh Y, Katsuoka K, Hoffman RM - PLoS ONE (2013)

Bottom Line: The ND-GFP cells of the sciatic nerve were also found to be multipotent as the ND-GFP cells in the hair follicle.The fibers consisted of ND-GFP-expressing spindle cells, which co-expressed the neuron marker β-III tubulin, the immature Schwann-cell marker p75(NTR) and TrkB which is associated with neurons.The results of the present report suggest a critical function of nestin-expressing cells in peripheral nerve growth and regeneration.

View Article: PubMed Central - PubMed

Affiliation: AntiCancer Inc., San Diego, California, United States of America ; Department of Surgery, University of California San Diego, San Diego, California, United States of America ; Department of Dermatology, Kitasato University School of Medicine, Kanagawa, Japan.

ABSTRACT
We have previously reported that hair follicles contain multipotent stem cells which express nestin. The nestin-expressing cells form the hair follicle sensory nerve. In vitro, the nestin-expressing hair follicle cells can differentiate into neurons, Schwann cells, and other cell types. In the present study, the sciatic nerve was excised from transgenic mice in which the nestin promoter drives green fluorescent protein (ND-GFP mice). The ND-GFP cells of the sciatic nerve were also found to be multipotent as the ND-GFP cells in the hair follicle. When the ND-GFP cells in the mouse sciatic nerve cultured on Gelfoam® and were imaged by confocal microscopy, they were observed forming fibers extending the nerve. The fibers consisted of ND-GFP-expressing spindle cells, which co-expressed the neuron marker β-III tubulin, the immature Schwann-cell marker p75(NTR) and TrkB which is associated with neurons. The fibers also contain nestin-negative spherical cells expressing GFAP, a Schwann-cell marker. The β-III tubulin-positive fibers had growth cones on their tips expressing F-actin, indicating they are growing axons. When the sciatic nerve from mice ubiquitously expressing red fluorescent protein (RFP) was co-cultured on Gelfoam® with the sciatic nerve from ND-GFP transgenic mice, the interaction of nerves was observed. Proliferating nestin-expressing cells in the injured sciatic nerve were also observed in vivo. Nestin-expressing cells were also observed in posterior nerves but not in the spinal cord itself, when placed in 3-D Gelfoam® culture. The results of the present report suggest a critical function of nestin-expressing cells in peripheral nerve growth and regeneration.

No MeSH data available.


Related in: MedlinePlus

ND-GFP-expressing cells are located in dorsal peripheral nerve roots but not in the spinal cord in 3D Gelfoam® histoculture.(A) A spinal cord with posterior roots removed from an ND-GFP transgenic mouse was put in Gelfoam® histoculture. On day 0, some ND-GFP-expressing cells were observed in the origin of posterior root (enclosed by white dashed lines). (B) Cross section of the spinal cord just after removal show that there were a few ND-GFP-expressing cells in the posterior root. White bar: 50 µm. (C) At day 7, posterior roots were enriched with ND-GFP-expressing cells. (D) Cross section of the spinal cord cultured for 7 days show that ND-GFP-expressing cells proliferated in the posterior root but not in the cortex of spinal cord. White bar: 50 µm.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3686756&req=5

pone-0067153-g008: ND-GFP-expressing cells are located in dorsal peripheral nerve roots but not in the spinal cord in 3D Gelfoam® histoculture.(A) A spinal cord with posterior roots removed from an ND-GFP transgenic mouse was put in Gelfoam® histoculture. On day 0, some ND-GFP-expressing cells were observed in the origin of posterior root (enclosed by white dashed lines). (B) Cross section of the spinal cord just after removal show that there were a few ND-GFP-expressing cells in the posterior root. White bar: 50 µm. (C) At day 7, posterior roots were enriched with ND-GFP-expressing cells. (D) Cross section of the spinal cord cultured for 7 days show that ND-GFP-expressing cells proliferated in the posterior root but not in the cortex of spinal cord. White bar: 50 µm.

Mentions: The spinal cord with posterior roots, excised from an ND-GFP transgenic mouse, was put in Gelfoam® histoculture. On day 0, some ND-GFP-expressing cells were seen in the origin of posterior roots (Fig. 8A,B). At day 7, the posterior roots were enriched with ND-GFP-expressing cells but were not observed in the cortex of the spinal cord (Fig. 8C,D).


Nestin-Expressing Stem Cells Promote Nerve Growth in Long-Term 3-Dimensional Gelfoam®-Supported Histoculture.

Mii S, Uehara F, Yano S, Tran B, Miwa S, Hiroshima Y, Amoh Y, Katsuoka K, Hoffman RM - PLoS ONE (2013)

ND-GFP-expressing cells are located in dorsal peripheral nerve roots but not in the spinal cord in 3D Gelfoam® histoculture.(A) A spinal cord with posterior roots removed from an ND-GFP transgenic mouse was put in Gelfoam® histoculture. On day 0, some ND-GFP-expressing cells were observed in the origin of posterior root (enclosed by white dashed lines). (B) Cross section of the spinal cord just after removal show that there were a few ND-GFP-expressing cells in the posterior root. White bar: 50 µm. (C) At day 7, posterior roots were enriched with ND-GFP-expressing cells. (D) Cross section of the spinal cord cultured for 7 days show that ND-GFP-expressing cells proliferated in the posterior root but not in the cortex of spinal cord. White bar: 50 µm.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3686756&req=5

pone-0067153-g008: ND-GFP-expressing cells are located in dorsal peripheral nerve roots but not in the spinal cord in 3D Gelfoam® histoculture.(A) A spinal cord with posterior roots removed from an ND-GFP transgenic mouse was put in Gelfoam® histoculture. On day 0, some ND-GFP-expressing cells were observed in the origin of posterior root (enclosed by white dashed lines). (B) Cross section of the spinal cord just after removal show that there were a few ND-GFP-expressing cells in the posterior root. White bar: 50 µm. (C) At day 7, posterior roots were enriched with ND-GFP-expressing cells. (D) Cross section of the spinal cord cultured for 7 days show that ND-GFP-expressing cells proliferated in the posterior root but not in the cortex of spinal cord. White bar: 50 µm.
Mentions: The spinal cord with posterior roots, excised from an ND-GFP transgenic mouse, was put in Gelfoam® histoculture. On day 0, some ND-GFP-expressing cells were seen in the origin of posterior roots (Fig. 8A,B). At day 7, the posterior roots were enriched with ND-GFP-expressing cells but were not observed in the cortex of the spinal cord (Fig. 8C,D).

Bottom Line: The ND-GFP cells of the sciatic nerve were also found to be multipotent as the ND-GFP cells in the hair follicle.The fibers consisted of ND-GFP-expressing spindle cells, which co-expressed the neuron marker β-III tubulin, the immature Schwann-cell marker p75(NTR) and TrkB which is associated with neurons.The results of the present report suggest a critical function of nestin-expressing cells in peripheral nerve growth and regeneration.

View Article: PubMed Central - PubMed

Affiliation: AntiCancer Inc., San Diego, California, United States of America ; Department of Surgery, University of California San Diego, San Diego, California, United States of America ; Department of Dermatology, Kitasato University School of Medicine, Kanagawa, Japan.

ABSTRACT
We have previously reported that hair follicles contain multipotent stem cells which express nestin. The nestin-expressing cells form the hair follicle sensory nerve. In vitro, the nestin-expressing hair follicle cells can differentiate into neurons, Schwann cells, and other cell types. In the present study, the sciatic nerve was excised from transgenic mice in which the nestin promoter drives green fluorescent protein (ND-GFP mice). The ND-GFP cells of the sciatic nerve were also found to be multipotent as the ND-GFP cells in the hair follicle. When the ND-GFP cells in the mouse sciatic nerve cultured on Gelfoam® and were imaged by confocal microscopy, they were observed forming fibers extending the nerve. The fibers consisted of ND-GFP-expressing spindle cells, which co-expressed the neuron marker β-III tubulin, the immature Schwann-cell marker p75(NTR) and TrkB which is associated with neurons. The fibers also contain nestin-negative spherical cells expressing GFAP, a Schwann-cell marker. The β-III tubulin-positive fibers had growth cones on their tips expressing F-actin, indicating they are growing axons. When the sciatic nerve from mice ubiquitously expressing red fluorescent protein (RFP) was co-cultured on Gelfoam® with the sciatic nerve from ND-GFP transgenic mice, the interaction of nerves was observed. Proliferating nestin-expressing cells in the injured sciatic nerve were also observed in vivo. Nestin-expressing cells were also observed in posterior nerves but not in the spinal cord itself, when placed in 3-D Gelfoam® culture. The results of the present report suggest a critical function of nestin-expressing cells in peripheral nerve growth and regeneration.

No MeSH data available.


Related in: MedlinePlus