Limits...
Yield Trends Are Insufficient to Double Global Crop Production by 2050.

Ray DK, Mueller ND, West PC, Foley JA - PLoS ONE (2013)

Bottom Line: Several studies have shown that global crop production needs to double by 2050 to meet the projected demands from rising population, diet shifts, and increasing biofuels consumption.Using ∼2.5 million agricultural statistics, collected for ∼13,500 political units across the world, we track four key global crops-maize, rice, wheat, and soybean-that currently produce nearly two-thirds of global agricultural calories.We present detailed maps to identify where rates must be increased to boost crop production and meet rising demands.

View Article: PubMed Central - PubMed

Affiliation: Institute on the Environment (IonE), University of Minnesota, Saint Paul, Minnesota, United States of America.

ABSTRACT
Several studies have shown that global crop production needs to double by 2050 to meet the projected demands from rising population, diet shifts, and increasing biofuels consumption. Boosting crop yields to meet these rising demands, rather than clearing more land for agriculture has been highlighted as a preferred solution to meet this goal. However, we first need to understand how crop yields are changing globally, and whether we are on track to double production by 2050. Using ∼2.5 million agricultural statistics, collected for ∼13,500 political units across the world, we track four key global crops-maize, rice, wheat, and soybean-that currently produce nearly two-thirds of global agricultural calories. We find that yields in these top four crops are increasing at 1.6%, 1.0%, 0.9%, and 1.3% per year, non-compounding rates, respectively, which is less than the 2.4% per year rate required to double global production by 2050. At these rates global production in these crops would increase by ∼67%, ∼42%, ∼38%, and ∼55%, respectively, which is far below what is needed to meet projected demands in 2050. We present detailed maps to identify where rates must be increased to boost crop production and meet rising demands.

No MeSH data available.


Global projections.Observed area-weighted global yield 1961–2008 shown using closed circles and projections to 2050 using solid lines for maize, rice, wheat, and soybean. Shading shows the 90% confidence region derived from 99 bootstrapped samples. The dashed line shows the trend of the ∼2.4% yield improvement required each year to double production in these crops by 2050 without bringing additional land under cultivation starting in the base year of 2008.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3686737&req=5

pone-0066428-g001: Global projections.Observed area-weighted global yield 1961–2008 shown using closed circles and projections to 2050 using solid lines for maize, rice, wheat, and soybean. Shading shows the 90% confidence region derived from 99 bootstrapped samples. The dashed line shows the trend of the ∼2.4% yield improvement required each year to double production in these crops by 2050 without bringing additional land under cultivation starting in the base year of 2008.

Mentions: The global average rates of yield increase across ∼13,500 political units are 1.6%, 1.0%, 0.9%, and 1.3% per year for maize, rice, wheat, and soybean, respectively (Table 1, Figure 1). A ∼2.4% per year rate of yield gains (non-compounding) is needed to double crop production by 2050. Current rates are thus not achieving this goal. At current rates only ∼67%, ∼42%, ∼38%, and ∼55% increases in maize, rice, wheat and soybean production, respectively, is possible by 2050.


Yield Trends Are Insufficient to Double Global Crop Production by 2050.

Ray DK, Mueller ND, West PC, Foley JA - PLoS ONE (2013)

Global projections.Observed area-weighted global yield 1961–2008 shown using closed circles and projections to 2050 using solid lines for maize, rice, wheat, and soybean. Shading shows the 90% confidence region derived from 99 bootstrapped samples. The dashed line shows the trend of the ∼2.4% yield improvement required each year to double production in these crops by 2050 without bringing additional land under cultivation starting in the base year of 2008.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3686737&req=5

pone-0066428-g001: Global projections.Observed area-weighted global yield 1961–2008 shown using closed circles and projections to 2050 using solid lines for maize, rice, wheat, and soybean. Shading shows the 90% confidence region derived from 99 bootstrapped samples. The dashed line shows the trend of the ∼2.4% yield improvement required each year to double production in these crops by 2050 without bringing additional land under cultivation starting in the base year of 2008.
Mentions: The global average rates of yield increase across ∼13,500 political units are 1.6%, 1.0%, 0.9%, and 1.3% per year for maize, rice, wheat, and soybean, respectively (Table 1, Figure 1). A ∼2.4% per year rate of yield gains (non-compounding) is needed to double crop production by 2050. Current rates are thus not achieving this goal. At current rates only ∼67%, ∼42%, ∼38%, and ∼55% increases in maize, rice, wheat and soybean production, respectively, is possible by 2050.

Bottom Line: Several studies have shown that global crop production needs to double by 2050 to meet the projected demands from rising population, diet shifts, and increasing biofuels consumption.Using ∼2.5 million agricultural statistics, collected for ∼13,500 political units across the world, we track four key global crops-maize, rice, wheat, and soybean-that currently produce nearly two-thirds of global agricultural calories.We present detailed maps to identify where rates must be increased to boost crop production and meet rising demands.

View Article: PubMed Central - PubMed

Affiliation: Institute on the Environment (IonE), University of Minnesota, Saint Paul, Minnesota, United States of America.

ABSTRACT
Several studies have shown that global crop production needs to double by 2050 to meet the projected demands from rising population, diet shifts, and increasing biofuels consumption. Boosting crop yields to meet these rising demands, rather than clearing more land for agriculture has been highlighted as a preferred solution to meet this goal. However, we first need to understand how crop yields are changing globally, and whether we are on track to double production by 2050. Using ∼2.5 million agricultural statistics, collected for ∼13,500 political units across the world, we track four key global crops-maize, rice, wheat, and soybean-that currently produce nearly two-thirds of global agricultural calories. We find that yields in these top four crops are increasing at 1.6%, 1.0%, 0.9%, and 1.3% per year, non-compounding rates, respectively, which is less than the 2.4% per year rate required to double global production by 2050. At these rates global production in these crops would increase by ∼67%, ∼42%, ∼38%, and ∼55%, respectively, which is far below what is needed to meet projected demands in 2050. We present detailed maps to identify where rates must be increased to boost crop production and meet rising demands.

No MeSH data available.