Limits...
Perceptual load vs. dilution: the roles of attentional focus, stimulus category, and target predictability.

Chen Z, Cave KR - Front Psychol (2013)

Bottom Line: Display set size did not affect the degree of distractor processing in all situations.Increasing the number of neutral items decreased distractor processing only when a task induced a broad attentional focus that included the neutral stimuli, when the neutral stimuli were in the same category as the target and distractor, and when the preknowledge of the target was insufficient to guide attention to the target efficiently.These results suggest that the effect of neutral stimuli on the degree of distractor processing is more complex than previously assumed.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, University of Canterbury Christchurch, New Zealand.

ABSTRACT
Many studies have shown that increasing the number of neutral stimuli in a display decreases distractor interference. This result has been interpreted within two different frameworks; a perceptual load account, based on a reduction in spare resources, and a dilution account, based on a degradation in distractor representation and/or an increase in crosstalk between the distractor and the neutral stimuli that contain visually similar features. In four experiments, we systematically manipulated the extent of attentional focus, stimulus category, and preknowledge of the target to examine how these factors would interact with the display set size to influence the degree of distractor processing. Display set size did not affect the degree of distractor processing in all situations. Increasing the number of neutral items decreased distractor processing only when a task induced a broad attentional focus that included the neutral stimuli, when the neutral stimuli were in the same category as the target and distractor, and when the preknowledge of the target was insufficient to guide attention to the target efficiently. These results suggest that the effect of neutral stimuli on the degree of distractor processing is more complex than previously assumed. They provide new insight into the competitive interactions between bottom-up and top-down processes that govern the efficiency of visual selective attention.

No MeSH data available.


Related in: MedlinePlus

The congruency effect for Experiment 2.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3675768&req=5

Figure 4: The congruency effect for Experiment 2.

Mentions: Table 4 shows the mean RTs and error rates, and Figure 4 shows the effects of congruency. Two repeated measures ANOVAs were conducted, one on the RT data (see Table 2), and the other on the error rates (see Table 3). As in Experiment 1, all the three main effects were significant. The participants were faster and more accurate in the 2-cue condition (613 ms with 5.7% error rate) than in the 6-cue condition (757 ms with 11.5% error rate), p < 0.001, for both RT and error rates. They were also faster and more accurate in the 2-letter condition (653 ms with 6.3% error rate) than in the 6-letter condition (717 ms with 10.9% error rate), p < 0.001 in both cases. In addition, performance was better on congruent trials (659 ms with 7.2% error rate) than on incongruent trials (711 ms with 10.1% error rate), p < 0.001 for RT; and p < 0.02 for error rates. CueSize interacted with DisplaySize, both in RT, p < 0.001, and in error rates, p < 0.001, suggesting that an increase in display set size impaired performance more when the target could appear at 1 of 6 locations (an increase of 115 ms and 8.8% error rate) rather than at 1 of 2 locations (an increase of 14 ms and 0.5% error rate). In RT, the magnitude of the congruency effect was again affected by CueSize, p < 0.001. The congruency effect was larger in the 6-cue condition (73 ms) than in the 2-cue condition (31 ms). Finally, there was a significant three-way interaction in RT, p < 0.01, which is illustrated in Figure 4. No other effects reached significance.


Perceptual load vs. dilution: the roles of attentional focus, stimulus category, and target predictability.

Chen Z, Cave KR - Front Psychol (2013)

The congruency effect for Experiment 2.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3675768&req=5

Figure 4: The congruency effect for Experiment 2.
Mentions: Table 4 shows the mean RTs and error rates, and Figure 4 shows the effects of congruency. Two repeated measures ANOVAs were conducted, one on the RT data (see Table 2), and the other on the error rates (see Table 3). As in Experiment 1, all the three main effects were significant. The participants were faster and more accurate in the 2-cue condition (613 ms with 5.7% error rate) than in the 6-cue condition (757 ms with 11.5% error rate), p < 0.001, for both RT and error rates. They were also faster and more accurate in the 2-letter condition (653 ms with 6.3% error rate) than in the 6-letter condition (717 ms with 10.9% error rate), p < 0.001 in both cases. In addition, performance was better on congruent trials (659 ms with 7.2% error rate) than on incongruent trials (711 ms with 10.1% error rate), p < 0.001 for RT; and p < 0.02 for error rates. CueSize interacted with DisplaySize, both in RT, p < 0.001, and in error rates, p < 0.001, suggesting that an increase in display set size impaired performance more when the target could appear at 1 of 6 locations (an increase of 115 ms and 8.8% error rate) rather than at 1 of 2 locations (an increase of 14 ms and 0.5% error rate). In RT, the magnitude of the congruency effect was again affected by CueSize, p < 0.001. The congruency effect was larger in the 6-cue condition (73 ms) than in the 2-cue condition (31 ms). Finally, there was a significant three-way interaction in RT, p < 0.01, which is illustrated in Figure 4. No other effects reached significance.

Bottom Line: Display set size did not affect the degree of distractor processing in all situations.Increasing the number of neutral items decreased distractor processing only when a task induced a broad attentional focus that included the neutral stimuli, when the neutral stimuli were in the same category as the target and distractor, and when the preknowledge of the target was insufficient to guide attention to the target efficiently.These results suggest that the effect of neutral stimuli on the degree of distractor processing is more complex than previously assumed.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, University of Canterbury Christchurch, New Zealand.

ABSTRACT
Many studies have shown that increasing the number of neutral stimuli in a display decreases distractor interference. This result has been interpreted within two different frameworks; a perceptual load account, based on a reduction in spare resources, and a dilution account, based on a degradation in distractor representation and/or an increase in crosstalk between the distractor and the neutral stimuli that contain visually similar features. In four experiments, we systematically manipulated the extent of attentional focus, stimulus category, and preknowledge of the target to examine how these factors would interact with the display set size to influence the degree of distractor processing. Display set size did not affect the degree of distractor processing in all situations. Increasing the number of neutral items decreased distractor processing only when a task induced a broad attentional focus that included the neutral stimuli, when the neutral stimuli were in the same category as the target and distractor, and when the preknowledge of the target was insufficient to guide attention to the target efficiently. These results suggest that the effect of neutral stimuli on the degree of distractor processing is more complex than previously assumed. They provide new insight into the competitive interactions between bottom-up and top-down processes that govern the efficiency of visual selective attention.

No MeSH data available.


Related in: MedlinePlus