Limits...
Nanorobot Hardware Architecture for Medical Defense

View Article: PubMed Central

ABSTRACT

This work presents a new approach with details on the integrated platform and hardware architecture for nanorobots application in epidemic control, which should enable real time in vivo prognosis of biohazard infection. The recent developments in the field of nanoelectronics, with transducers progressively shrinking down to smaller sizes through nanotechnology and carbon nanotubes, are expected to result in innovative biomedical instrumentation possibilities, with new therapies and efficient diagnosis methodologies. The use of integrated systems, smart biosensors, and programmable nanodevices are advancing nanoelectronics, enabling the progressive research and development of molecular machines. It should provide high precision pervasive biomedical monitoring with real time data transmission. The use of nanobioelectronics as embedded systems is the natural pathway towards manufacturing methodology to achieve nanorobot applications out of laboratories sooner as possible. To demonstrate the practical application of medical nanorobotics, a 3D simulation based on clinical data addresses how to integrate communication with nanorobots using RFID, mobile phones, and satellites, applied to long distance ubiquitous surveillance and health monitoring for troops in conflict zones. Therefore, the current model can also be used to prevent and save a population against the case of some targeted epidemic disease.

No MeSH data available.


Related in: MedlinePlus

Screenshots with nanorobots and red blood cells inside the vessel. The real time 3D simulation optionally provides visualization either with or without the red blood cells. The influenza infection with cell hostage begins to spread from infected to nearby uninfected cells. The nanorobots flow with the bloodstream sensing for protein overexpression.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3675524&req=5

f5-sensors-08-02932: Screenshots with nanorobots and red blood cells inside the vessel. The real time 3D simulation optionally provides visualization either with or without the red blood cells. The influenza infection with cell hostage begins to spread from infected to nearby uninfected cells. The nanorobots flow with the bloodstream sensing for protein overexpression.

Mentions: Small vessels have diameters of up to several tens of microns, and lengths of about a millimeter. Notwithstanding our control actuation can be set with different parameters, such as adjusting detection thresholds, we adopted typical values for these properties. The workspace used in the simulator comprised an environment consisting of a segment of the vessel with length L = 60μm and diameter K = 30μm. The model has also a small group of hostage cells, as the medical target on the vessel wall (Fig. 5), releasing alpha-NAGA proteins into the fluid. Cells and nanorobots continually enter one end of the workspace along with the fluid flow. We treat nanorobots not responding while within the workspace as if they did not detect any signal, so they flow with the fluid as it leaves the workspace. Thus, we choose the workspace length sufficient to include the region where the chemical from the target is significantly above the background level. The cells occupy about 1/5-th of the workspace volume, a typical hematocrit value for small blood vessels.


Nanorobot Hardware Architecture for Medical Defense
Screenshots with nanorobots and red blood cells inside the vessel. The real time 3D simulation optionally provides visualization either with or without the red blood cells. The influenza infection with cell hostage begins to spread from infected to nearby uninfected cells. The nanorobots flow with the bloodstream sensing for protein overexpression.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3675524&req=5

f5-sensors-08-02932: Screenshots with nanorobots and red blood cells inside the vessel. The real time 3D simulation optionally provides visualization either with or without the red blood cells. The influenza infection with cell hostage begins to spread from infected to nearby uninfected cells. The nanorobots flow with the bloodstream sensing for protein overexpression.
Mentions: Small vessels have diameters of up to several tens of microns, and lengths of about a millimeter. Notwithstanding our control actuation can be set with different parameters, such as adjusting detection thresholds, we adopted typical values for these properties. The workspace used in the simulator comprised an environment consisting of a segment of the vessel with length L = 60μm and diameter K = 30μm. The model has also a small group of hostage cells, as the medical target on the vessel wall (Fig. 5), releasing alpha-NAGA proteins into the fluid. Cells and nanorobots continually enter one end of the workspace along with the fluid flow. We treat nanorobots not responding while within the workspace as if they did not detect any signal, so they flow with the fluid as it leaves the workspace. Thus, we choose the workspace length sufficient to include the region where the chemical from the target is significantly above the background level. The cells occupy about 1/5-th of the workspace volume, a typical hematocrit value for small blood vessels.

View Article: PubMed Central

ABSTRACT

This work presents a new approach with details on the integrated platform and hardware architecture for nanorobots application in epidemic control, which should enable real time in vivo prognosis of biohazard infection. The recent developments in the field of nanoelectronics, with transducers progressively shrinking down to smaller sizes through nanotechnology and carbon nanotubes, are expected to result in innovative biomedical instrumentation possibilities, with new therapies and efficient diagnosis methodologies. The use of integrated systems, smart biosensors, and programmable nanodevices are advancing nanoelectronics, enabling the progressive research and development of molecular machines. It should provide high precision pervasive biomedical monitoring with real time data transmission. The use of nanobioelectronics as embedded systems is the natural pathway towards manufacturing methodology to achieve nanorobot applications out of laboratories sooner as possible. To demonstrate the practical application of medical nanorobotics, a 3D simulation based on clinical data addresses how to integrate communication with nanorobots using RFID, mobile phones, and satellites, applied to long distance ubiquitous surveillance and health monitoring for troops in conflict zones. Therefore, the current model can also be used to prevent and save a population against the case of some targeted epidemic disease.

No MeSH data available.


Related in: MedlinePlus