Limits...
Population dynamics of rhesus macaques and associated foamy virus in Bangladesh.

Feeroz MM, Soliven K, Small CT, Engel GA, Andreina Pacheco M, Yee JL, Wang X, Kamrul Hasan M, Oh G, Levine KL, Rabiul Alam SM, Craig KL, Jackson DL, Lee EG, Barry PA, Lerche NW, Escalante AA, Matsen Iv FA, Linial ML, Jones-Engel L - Emerg Microbes Infect (2013)

Bottom Line: We also found evidence suggesting that humans traveling the region with performing macaques likely play a role in the translocation of macaques and SFV.Our studies found that individual animals can harbor more than one strain of SFV and that presence of more than one SFV strain is more common among older animals.These findings paint a more detailed picture of how geographic and sociocultural factors influence the spectrum of simian-borne retroviruses.

View Article: PubMed Central - PubMed

Affiliation: Jahangirnagar University , Savar, Dhaka 1342, Bangladesh.

ABSTRACT
Foamy viruses are complex retroviruses that have been shown to be transmitted from nonhuman primates to humans. In Bangladesh, infection with simian foamy virus (SFV) is ubiquitous among rhesus macaques, which come into contact with humans in diverse locations and contexts throughout the country. We analyzed microsatellite DNA from 126 macaques at six sites in Bangladesh in order to characterize geographic patterns of macaque population structure. We also included in this study 38 macaques owned by nomadic people who train them to perform for audiences. PCR was used to analyze a portion of the proviral gag gene from all SFV-positive macaques, and multiple clones were sequenced. Phylogenetic analysis was used to infer long-term patterns of viral transmission. Analyses of SFV gag gene sequences indicated that macaque populations from different areas harbor genetically distinct strains of SFV, suggesting that geographic features such as forest cover play a role in determining the dispersal of macaques and SFV. We also found evidence suggesting that humans traveling the region with performing macaques likely play a role in the translocation of macaques and SFV. Our studies found that individual animals can harbor more than one strain of SFV and that presence of more than one SFV strain is more common among older animals. Some macaques are infected with SFV that appears to be recombinant. These findings paint a more detailed picture of how geographic and sociocultural factors influence the spectrum of simian-borne retroviruses.

No MeSH data available.


Related in: MedlinePlus

Relationship between monkey and viral population structures. Each animal is represented by a single column spanning the figure's sections. Columns are sorted by viral diversity, animal age, and sampling population. (A) Normalized Hamming distance for each pair of clones from each animal, representing intra-host viral diversity. The dotted line represents expected distance (due to PCR error) between distinct PCR products of a single DNA molecule. (B) The identifier of the animal to which each column corresponds. Respectively, (C), (D) and (E) represent number of viral clones, animal age class and sampling population for each monkey. (F) Microsatellite clusters as inferred by STRUCTURE; admixture between genotype clusters is represented by bar height. Microsatellite colors are assigned according to an observed correlation with sampling location. (G) Viral strains cloned from each animal, classified as described in the text. All sampled monkeys are represented except for one FV negative infant monkey (MBG211).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3675400&req=5

fig2: Relationship between monkey and viral population structures. Each animal is represented by a single column spanning the figure's sections. Columns are sorted by viral diversity, animal age, and sampling population. (A) Normalized Hamming distance for each pair of clones from each animal, representing intra-host viral diversity. The dotted line represents expected distance (due to PCR error) between distinct PCR products of a single DNA molecule. (B) The identifier of the animal to which each column corresponds. Respectively, (C), (D) and (E) represent number of viral clones, animal age class and sampling population for each monkey. (F) Microsatellite clusters as inferred by STRUCTURE; admixture between genotype clusters is represented by bar height. Microsatellite colors are assigned according to an observed correlation with sampling location. (G) Viral strains cloned from each animal, classified as described in the text. All sampled monkeys are represented except for one FV negative infant monkey (MBG211).

Mentions: When the resulting clusters were ordered by size, there were six that were substantially larger than the rest. Each of these six was uniquely associated with a geographic region, except for Bormi, which had two clusters associated with it. We named each of these strains by the geographic location where it dominated; in the case of Bormi, the two clusters were arbitrarily designated Bormi1 and Bormi2. This assignment of viral strains is used in the rest of the present paper, furnishing the labeling in Figure 2.


Population dynamics of rhesus macaques and associated foamy virus in Bangladesh.

Feeroz MM, Soliven K, Small CT, Engel GA, Andreina Pacheco M, Yee JL, Wang X, Kamrul Hasan M, Oh G, Levine KL, Rabiul Alam SM, Craig KL, Jackson DL, Lee EG, Barry PA, Lerche NW, Escalante AA, Matsen Iv FA, Linial ML, Jones-Engel L - Emerg Microbes Infect (2013)

Relationship between monkey and viral population structures. Each animal is represented by a single column spanning the figure's sections. Columns are sorted by viral diversity, animal age, and sampling population. (A) Normalized Hamming distance for each pair of clones from each animal, representing intra-host viral diversity. The dotted line represents expected distance (due to PCR error) between distinct PCR products of a single DNA molecule. (B) The identifier of the animal to which each column corresponds. Respectively, (C), (D) and (E) represent number of viral clones, animal age class and sampling population for each monkey. (F) Microsatellite clusters as inferred by STRUCTURE; admixture between genotype clusters is represented by bar height. Microsatellite colors are assigned according to an observed correlation with sampling location. (G) Viral strains cloned from each animal, classified as described in the text. All sampled monkeys are represented except for one FV negative infant monkey (MBG211).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3675400&req=5

fig2: Relationship between monkey and viral population structures. Each animal is represented by a single column spanning the figure's sections. Columns are sorted by viral diversity, animal age, and sampling population. (A) Normalized Hamming distance for each pair of clones from each animal, representing intra-host viral diversity. The dotted line represents expected distance (due to PCR error) between distinct PCR products of a single DNA molecule. (B) The identifier of the animal to which each column corresponds. Respectively, (C), (D) and (E) represent number of viral clones, animal age class and sampling population for each monkey. (F) Microsatellite clusters as inferred by STRUCTURE; admixture between genotype clusters is represented by bar height. Microsatellite colors are assigned according to an observed correlation with sampling location. (G) Viral strains cloned from each animal, classified as described in the text. All sampled monkeys are represented except for one FV negative infant monkey (MBG211).
Mentions: When the resulting clusters were ordered by size, there were six that were substantially larger than the rest. Each of these six was uniquely associated with a geographic region, except for Bormi, which had two clusters associated with it. We named each of these strains by the geographic location where it dominated; in the case of Bormi, the two clusters were arbitrarily designated Bormi1 and Bormi2. This assignment of viral strains is used in the rest of the present paper, furnishing the labeling in Figure 2.

Bottom Line: We also found evidence suggesting that humans traveling the region with performing macaques likely play a role in the translocation of macaques and SFV.Our studies found that individual animals can harbor more than one strain of SFV and that presence of more than one SFV strain is more common among older animals.These findings paint a more detailed picture of how geographic and sociocultural factors influence the spectrum of simian-borne retroviruses.

View Article: PubMed Central - PubMed

Affiliation: Jahangirnagar University , Savar, Dhaka 1342, Bangladesh.

ABSTRACT
Foamy viruses are complex retroviruses that have been shown to be transmitted from nonhuman primates to humans. In Bangladesh, infection with simian foamy virus (SFV) is ubiquitous among rhesus macaques, which come into contact with humans in diverse locations and contexts throughout the country. We analyzed microsatellite DNA from 126 macaques at six sites in Bangladesh in order to characterize geographic patterns of macaque population structure. We also included in this study 38 macaques owned by nomadic people who train them to perform for audiences. PCR was used to analyze a portion of the proviral gag gene from all SFV-positive macaques, and multiple clones were sequenced. Phylogenetic analysis was used to infer long-term patterns of viral transmission. Analyses of SFV gag gene sequences indicated that macaque populations from different areas harbor genetically distinct strains of SFV, suggesting that geographic features such as forest cover play a role in determining the dispersal of macaques and SFV. We also found evidence suggesting that humans traveling the region with performing macaques likely play a role in the translocation of macaques and SFV. Our studies found that individual animals can harbor more than one strain of SFV and that presence of more than one SFV strain is more common among older animals. Some macaques are infected with SFV that appears to be recombinant. These findings paint a more detailed picture of how geographic and sociocultural factors influence the spectrum of simian-borne retroviruses.

No MeSH data available.


Related in: MedlinePlus