Limits...
Seeking a bridge between language and motor cortices: a PPI study.

Maieron M, Marin D, Fabbro F, Skrap M - Front Hum Neurosci (2013)

Bottom Line: A lack of significant changes in the functional coupling between the left M1 cortex and functional nodes of the linguistic network during the verb generation task was found for all the groups.In addition, we found that the ability to perform an action verb naming task was not related to a damaged M1.We will discuss how these findings indicate that action words do not automatically activate the M1 cortex; we suggest rather that its enrolment could be related to other not strictly linguistic processing.

View Article: PubMed Central - PubMed

Affiliation: Fisica Medica, Azienda Ospedaliero Universitaria Santa Maria Della Misericordia Udine, Italy.

ABSTRACT
The relation between the sensorimotor cortex and the language network has been widely discussed but still remains controversial. Two independent theories compete to explain how this area is involved during action-related verbs processing. The embodied view assumes that action word representations activate sensorimotor representations which are accessed when an action word is processed or when an action is observed. The abstract hypothesis states that the mental representations of words are abstract and independent of the objects' sensorimotor properties they refer to. We combined neuropsychological and fMRI-PPI connectivity data, to address action-related verbs processing in neurosurgical patients with lesions involving (N = 5) or sparing (N = 5) the primary motor cortex and healthy controls (N = 12). A lack of significant changes in the functional coupling between the left M1 cortex and functional nodes of the linguistic network during the verb generation task was found for all the groups. In addition, we found that the ability to perform an action verb naming task was not related to a damaged M1. These data showed that there was not a task-specific functional interaction active between M1 and the inferior frontal gyrus. We will discuss how these findings indicate that action words do not automatically activate the M1 cortex; we suggest rather that its enrolment could be related to other not strictly linguistic processing.

No MeSH data available.


Related in: MedlinePlus

(A) Activation maps for whole-brain GLM analysis related to verb generation task vs. rest. The contrast data between groups are presented at a threshold of p < 0.05, cluster corrected for Z > 2.3. (B) Average BOLD signal time-course extracted from the motor seed ROI (left) and from the Broca's seed ROI (right) during the verb generation task are displayed for all the groups separately (M1−, lesions involving the primary motor cortex; M1+, lesions sparing M1; HC, healthy controls).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3675382&req=5

Figure 3: (A) Activation maps for whole-brain GLM analysis related to verb generation task vs. rest. The contrast data between groups are presented at a threshold of p < 0.05, cluster corrected for Z > 2.3. (B) Average BOLD signal time-course extracted from the motor seed ROI (left) and from the Broca's seed ROI (right) during the verb generation task are displayed for all the groups separately (M1−, lesions involving the primary motor cortex; M1+, lesions sparing M1; HC, healthy controls).

Mentions: The contrast (verb generation > rest) in HC > group with lesions sparing M1 (M1+) showed clusters of activity in the right occipital pole, the left precentralgyrus, the right superior parietal gyrus, the left superior temporal gyrus, the left SMA and the left middle temporal gyrus. The opposite contrast (M1+ > HC) showed clusters of activity bilaterally in the occipital cortex, bilaterally in the lateral occipital cortex, in the right suparmarginalgyrus, the right precentralgyrus, the left inferior temporal gyrus and the right angular gyrus (Table 5, Figure 3A).


Seeking a bridge between language and motor cortices: a PPI study.

Maieron M, Marin D, Fabbro F, Skrap M - Front Hum Neurosci (2013)

(A) Activation maps for whole-brain GLM analysis related to verb generation task vs. rest. The contrast data between groups are presented at a threshold of p < 0.05, cluster corrected for Z > 2.3. (B) Average BOLD signal time-course extracted from the motor seed ROI (left) and from the Broca's seed ROI (right) during the verb generation task are displayed for all the groups separately (M1−, lesions involving the primary motor cortex; M1+, lesions sparing M1; HC, healthy controls).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3675382&req=5

Figure 3: (A) Activation maps for whole-brain GLM analysis related to verb generation task vs. rest. The contrast data between groups are presented at a threshold of p < 0.05, cluster corrected for Z > 2.3. (B) Average BOLD signal time-course extracted from the motor seed ROI (left) and from the Broca's seed ROI (right) during the verb generation task are displayed for all the groups separately (M1−, lesions involving the primary motor cortex; M1+, lesions sparing M1; HC, healthy controls).
Mentions: The contrast (verb generation > rest) in HC > group with lesions sparing M1 (M1+) showed clusters of activity in the right occipital pole, the left precentralgyrus, the right superior parietal gyrus, the left superior temporal gyrus, the left SMA and the left middle temporal gyrus. The opposite contrast (M1+ > HC) showed clusters of activity bilaterally in the occipital cortex, bilaterally in the lateral occipital cortex, in the right suparmarginalgyrus, the right precentralgyrus, the left inferior temporal gyrus and the right angular gyrus (Table 5, Figure 3A).

Bottom Line: A lack of significant changes in the functional coupling between the left M1 cortex and functional nodes of the linguistic network during the verb generation task was found for all the groups.In addition, we found that the ability to perform an action verb naming task was not related to a damaged M1.We will discuss how these findings indicate that action words do not automatically activate the M1 cortex; we suggest rather that its enrolment could be related to other not strictly linguistic processing.

View Article: PubMed Central - PubMed

Affiliation: Fisica Medica, Azienda Ospedaliero Universitaria Santa Maria Della Misericordia Udine, Italy.

ABSTRACT
The relation between the sensorimotor cortex and the language network has been widely discussed but still remains controversial. Two independent theories compete to explain how this area is involved during action-related verbs processing. The embodied view assumes that action word representations activate sensorimotor representations which are accessed when an action word is processed or when an action is observed. The abstract hypothesis states that the mental representations of words are abstract and independent of the objects' sensorimotor properties they refer to. We combined neuropsychological and fMRI-PPI connectivity data, to address action-related verbs processing in neurosurgical patients with lesions involving (N = 5) or sparing (N = 5) the primary motor cortex and healthy controls (N = 12). A lack of significant changes in the functional coupling between the left M1 cortex and functional nodes of the linguistic network during the verb generation task was found for all the groups. In addition, we found that the ability to perform an action verb naming task was not related to a damaged M1. These data showed that there was not a task-specific functional interaction active between M1 and the inferior frontal gyrus. We will discuss how these findings indicate that action words do not automatically activate the M1 cortex; we suggest rather that its enrolment could be related to other not strictly linguistic processing.

No MeSH data available.


Related in: MedlinePlus