Limits...
Rhythmic and melodic deviations in musical sequences recruit different cortical areas for mismatch detection.

Lappe C, Steinsträter O, Pantev C - Front Hum Neurosci (2013)

Bottom Line: The MMN to melodic deviations revealed significant right hemispheric neural activation in the superior temporal gyrus (STG), inferior frontal cortex (IFC), and the superior frontal (SFG) and orbitofrontal (OFG) gyri.In contrast, beamformer analysis of the data from the rhythm study revealed bilateral activation within the vicinity of auditory cortices and in the inferior parietal lobule (IPL), an area that has recently been implied in temporal processing.We conclude that different cortical networks are activated in the analysis of the temporal and the melodic content of musical material, and discuss these networks in the context of the dual-pathway model of auditory processing.

View Article: PubMed Central - PubMed

Affiliation: Department of Medicine, Institute for Biomagnetism and Biosignalanalysis, University of Münster Münster, Germany.

ABSTRACT
The mismatch negativity (MMN), an event-related potential (ERP) representing the violation of an acoustic regularity, is considered as a pre-attentive change detection mechanism at the sensory level on the one hand and as a prediction error signal on the other hand, suggesting that bottom-up as well as top-down processes are involved in its generation. Rhythmic and melodic deviations within a musical sequence elicit a MMN in musically trained subjects, indicating that acquired musical expertise leads to better discrimination accuracy of musical material and better predictions about upcoming musical events. Expectation violations to musical material could therefore recruit neural generators that reflect top-down processes that are based on musical knowledge. We describe the neural generators of the musical MMN for rhythmic and melodic material after a short-term sensorimotor-auditory (SA) training. We compare the localization of musical MMN data from two previous MEG studies by applying beamformer analysis. One study focused on the melodic harmonic progression whereas the other study focused on rhythmic progression. The MMN to melodic deviations revealed significant right hemispheric neural activation in the superior temporal gyrus (STG), inferior frontal cortex (IFC), and the superior frontal (SFG) and orbitofrontal (OFG) gyri. IFC and SFG activation was also observed in the left hemisphere. In contrast, beamformer analysis of the data from the rhythm study revealed bilateral activation within the vicinity of auditory cortices and in the inferior parietal lobule (IPL), an area that has recently been implied in temporal processing. We conclude that different cortical networks are activated in the analysis of the temporal and the melodic content of musical material, and discuss these networks in the context of the dual-pathway model of auditory processing.

No MeSH data available.


Related in: MedlinePlus

(A) Training material for the rhythm study of Lappe et al. (2011). The training material was taken from a piano exercise book (Proksch M, 2000) (Proksch, 2000). (B) To facilitate training a template was used where the image of the keyboard was shown. In this figure only one measure is depicted. Small circles indicated that notes should be played at double speed. In general the circles marked that the right hand should be used, the rectangles indicated to use the left hand. All numbers depicted in one horizontal line had to be played simultaneously. (C) Stimuli for the MEG measurement before and after training. In the deviant the last tone was presented 100 ms earlier. (D) Group averages of the source waveforms obtained after performing source-space projection before and after training for both groups and hemispheres. Thin lines indicate pre-training and thick lines post-training data. The left column depicts the source waveform of the left, the right column depicts the source waveform of the right hemisphere.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3675320&req=5

Figure 2: (A) Training material for the rhythm study of Lappe et al. (2011). The training material was taken from a piano exercise book (Proksch M, 2000) (Proksch, 2000). (B) To facilitate training a template was used where the image of the keyboard was shown. In this figure only one measure is depicted. Small circles indicated that notes should be played at double speed. In general the circles marked that the right hand should be used, the rectangles indicated to use the left hand. All numbers depicted in one horizontal line had to be played simultaneously. (C) Stimuli for the MEG measurement before and after training. In the deviant the last tone was presented 100 ms earlier. (D) Group averages of the source waveforms obtained after performing source-space projection before and after training for both groups and hemispheres. Thin lines indicate pre-training and thick lines post-training data. The left column depicts the source waveform of the left, the right column depicts the source waveform of the right hemisphere.

Mentions: Besides melody, rhythm is another basic feature of music. Musical rhythm is based on a recurring pulse or meter, which makes musical events highly predictable. Tapping to a beat is a natural behavior and for most people there is no specific musical training necessary to correctly predict upcoming musical events (Zatorre et al., 2007; Geiser et al., 2009). However, musicians are more accurate in the perception and production of rhythm and meter than non-musicians (Geiser et al., 2010). The ability of musicians to better discriminate differences in rhythmic timing is reflected in an enhanced MMN generated by a rhythmic deviation (Vuust et al., 2005). Like for melody, a short period of piano training in non-musicians induces an increase in the MMN to rhythmic deviations (Figure 2) (Lappe et al., 2011). The ERP results (Figure 2D) showed a significant enhancement of the MMN only for the participants that actively played during the training (SA-group), not for participants that underwent only auditory training (A-group). Furthermore, the brain activation for rhythmic deviations was bilateral whereas the activation for pitch deviants (Figure 1) was significantly stronger in the right hemisphere.


Rhythmic and melodic deviations in musical sequences recruit different cortical areas for mismatch detection.

Lappe C, Steinsträter O, Pantev C - Front Hum Neurosci (2013)

(A) Training material for the rhythm study of Lappe et al. (2011). The training material was taken from a piano exercise book (Proksch M, 2000) (Proksch, 2000). (B) To facilitate training a template was used where the image of the keyboard was shown. In this figure only one measure is depicted. Small circles indicated that notes should be played at double speed. In general the circles marked that the right hand should be used, the rectangles indicated to use the left hand. All numbers depicted in one horizontal line had to be played simultaneously. (C) Stimuli for the MEG measurement before and after training. In the deviant the last tone was presented 100 ms earlier. (D) Group averages of the source waveforms obtained after performing source-space projection before and after training for both groups and hemispheres. Thin lines indicate pre-training and thick lines post-training data. The left column depicts the source waveform of the left, the right column depicts the source waveform of the right hemisphere.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3675320&req=5

Figure 2: (A) Training material for the rhythm study of Lappe et al. (2011). The training material was taken from a piano exercise book (Proksch M, 2000) (Proksch, 2000). (B) To facilitate training a template was used where the image of the keyboard was shown. In this figure only one measure is depicted. Small circles indicated that notes should be played at double speed. In general the circles marked that the right hand should be used, the rectangles indicated to use the left hand. All numbers depicted in one horizontal line had to be played simultaneously. (C) Stimuli for the MEG measurement before and after training. In the deviant the last tone was presented 100 ms earlier. (D) Group averages of the source waveforms obtained after performing source-space projection before and after training for both groups and hemispheres. Thin lines indicate pre-training and thick lines post-training data. The left column depicts the source waveform of the left, the right column depicts the source waveform of the right hemisphere.
Mentions: Besides melody, rhythm is another basic feature of music. Musical rhythm is based on a recurring pulse or meter, which makes musical events highly predictable. Tapping to a beat is a natural behavior and for most people there is no specific musical training necessary to correctly predict upcoming musical events (Zatorre et al., 2007; Geiser et al., 2009). However, musicians are more accurate in the perception and production of rhythm and meter than non-musicians (Geiser et al., 2010). The ability of musicians to better discriminate differences in rhythmic timing is reflected in an enhanced MMN generated by a rhythmic deviation (Vuust et al., 2005). Like for melody, a short period of piano training in non-musicians induces an increase in the MMN to rhythmic deviations (Figure 2) (Lappe et al., 2011). The ERP results (Figure 2D) showed a significant enhancement of the MMN only for the participants that actively played during the training (SA-group), not for participants that underwent only auditory training (A-group). Furthermore, the brain activation for rhythmic deviations was bilateral whereas the activation for pitch deviants (Figure 1) was significantly stronger in the right hemisphere.

Bottom Line: The MMN to melodic deviations revealed significant right hemispheric neural activation in the superior temporal gyrus (STG), inferior frontal cortex (IFC), and the superior frontal (SFG) and orbitofrontal (OFG) gyri.In contrast, beamformer analysis of the data from the rhythm study revealed bilateral activation within the vicinity of auditory cortices and in the inferior parietal lobule (IPL), an area that has recently been implied in temporal processing.We conclude that different cortical networks are activated in the analysis of the temporal and the melodic content of musical material, and discuss these networks in the context of the dual-pathway model of auditory processing.

View Article: PubMed Central - PubMed

Affiliation: Department of Medicine, Institute for Biomagnetism and Biosignalanalysis, University of Münster Münster, Germany.

ABSTRACT
The mismatch negativity (MMN), an event-related potential (ERP) representing the violation of an acoustic regularity, is considered as a pre-attentive change detection mechanism at the sensory level on the one hand and as a prediction error signal on the other hand, suggesting that bottom-up as well as top-down processes are involved in its generation. Rhythmic and melodic deviations within a musical sequence elicit a MMN in musically trained subjects, indicating that acquired musical expertise leads to better discrimination accuracy of musical material and better predictions about upcoming musical events. Expectation violations to musical material could therefore recruit neural generators that reflect top-down processes that are based on musical knowledge. We describe the neural generators of the musical MMN for rhythmic and melodic material after a short-term sensorimotor-auditory (SA) training. We compare the localization of musical MMN data from two previous MEG studies by applying beamformer analysis. One study focused on the melodic harmonic progression whereas the other study focused on rhythmic progression. The MMN to melodic deviations revealed significant right hemispheric neural activation in the superior temporal gyrus (STG), inferior frontal cortex (IFC), and the superior frontal (SFG) and orbitofrontal (OFG) gyri. IFC and SFG activation was also observed in the left hemisphere. In contrast, beamformer analysis of the data from the rhythm study revealed bilateral activation within the vicinity of auditory cortices and in the inferior parietal lobule (IPL), an area that has recently been implied in temporal processing. We conclude that different cortical networks are activated in the analysis of the temporal and the melodic content of musical material, and discuss these networks in the context of the dual-pathway model of auditory processing.

No MeSH data available.


Related in: MedlinePlus