Limits...
Peroneal nerve: Normal anatomy and pathologic findings on routine MRI of the knee.

Van den Bergh FR, Vanhoenacker FM, De Smet E, Huysse W, Verstraete KL - Insights Imaging (2013)

Bottom Line: On a routine MR examination without dedicated MR-neurography sequences the peroneal nerve can readily be assessed.Axial T1-weighted sequences are especially helpful as they allow a good differentiation between the nerve and the surrounding fat.In the second part we discuss the different pathologic conditions: accidental and surgical trauma, and intraneural and extraneural compressive lesions. • Six anatomical features contribute to the vulnerability of the peroneal nerve around the knee. • MR signs of muscle denervation within the anterior compartment are important secondary signs for evaluation of the peroneal nerve. • The most common lesions of the peroneal nerve are traumatic or compressive. • Intraneural ganglia originate from the proximal tibiofibular joint. • Axial T1-weighted images are the best sequence to visualise the peroneal nerve on routine MRI.

View Article: PubMed Central - PubMed

Affiliation: Department of Radiology, AZ Sint-Maarten Duffel-Mechelen, campus Duffel, Rooienberg 25, 2570, Duffel, Belgium.

ABSTRACT

Background: Peroneal nerve lesions are not common and are often exclusively assessed clinically and electromyographically.

Methods: On a routine MR examination without dedicated MR-neurography sequences the peroneal nerve can readily be assessed. Axial T1-weighted sequences are especially helpful as they allow a good differentiation between the nerve and the surrounding fat.

Results: The purpose of this article is to review the normal anatomy and pathologic conditions of the peroneal nerve around the knee.

Conclusion: In the first part the variable anatomy of the peroneal nerve around the knee will be emphasized, followed by a discussion of the clinical findings of peroneal neuropathy and general MR signs of denervation. Six anatomical features may predispose to peroneal neuropathy: paucity of epineural tissue, biceps femoris tunnel, bifurcation level, superficial course around the fibula, fibular tunnel and finally the additional nerve branches. In the second part we discuss the different pathologic conditions: accidental and surgical trauma, and intraneural and extraneural compressive lesions.

Teaching points: • Six anatomical features contribute to the vulnerability of the peroneal nerve around the knee. • MR signs of muscle denervation within the anterior compartment are important secondary signs for evaluation of the peroneal nerve. • The most common lesions of the peroneal nerve are traumatic or compressive. • Intraneural ganglia originate from the proximal tibiofibular joint. • Axial T1-weighted images are the best sequence to visualise the peroneal nerve on routine MRI.

No MeSH data available.


Related in: MedlinePlus

Extraneural ganglion. Photograph of the left knee (a) shows a focal swelling on the posterolateral corner of the knee (thick arrow). Axial T2-WI (b) shows a cyst posterior to the proximal tibiofibular joint, displacing the common peroneal nerve laterally (arrow)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3675257&req=5

Fig16: Extraneural ganglion. Photograph of the left knee (a) shows a focal swelling on the posterolateral corner of the knee (thick arrow). Axial T2-WI (b) shows a cyst posterior to the proximal tibiofibular joint, displacing the common peroneal nerve laterally (arrow)

Mentions: Extraneural ganglia originating from the proximal tibiofibular joint are more frequent than their intraneural counterpart. These cystic masses can sometimes be very large and they are connected to the proximal tibiofibular joint with a fine stalk. Articular connection has been demonstrated by delayed arthrography, with best results on computed tomography (CT) 1–2 h post injection [49]. The most common location is in the tibialis anterior muscle and the peroneus longus muscle [50]. Pressure on the peroneal nerve can occur (Fig. 16), leading to hypoesthesia or dorsiflexion weakness.Fig. 16


Peroneal nerve: Normal anatomy and pathologic findings on routine MRI of the knee.

Van den Bergh FR, Vanhoenacker FM, De Smet E, Huysse W, Verstraete KL - Insights Imaging (2013)

Extraneural ganglion. Photograph of the left knee (a) shows a focal swelling on the posterolateral corner of the knee (thick arrow). Axial T2-WI (b) shows a cyst posterior to the proximal tibiofibular joint, displacing the common peroneal nerve laterally (arrow)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3675257&req=5

Fig16: Extraneural ganglion. Photograph of the left knee (a) shows a focal swelling on the posterolateral corner of the knee (thick arrow). Axial T2-WI (b) shows a cyst posterior to the proximal tibiofibular joint, displacing the common peroneal nerve laterally (arrow)
Mentions: Extraneural ganglia originating from the proximal tibiofibular joint are more frequent than their intraneural counterpart. These cystic masses can sometimes be very large and they are connected to the proximal tibiofibular joint with a fine stalk. Articular connection has been demonstrated by delayed arthrography, with best results on computed tomography (CT) 1–2 h post injection [49]. The most common location is in the tibialis anterior muscle and the peroneus longus muscle [50]. Pressure on the peroneal nerve can occur (Fig. 16), leading to hypoesthesia or dorsiflexion weakness.Fig. 16

Bottom Line: On a routine MR examination without dedicated MR-neurography sequences the peroneal nerve can readily be assessed.Axial T1-weighted sequences are especially helpful as they allow a good differentiation between the nerve and the surrounding fat.In the second part we discuss the different pathologic conditions: accidental and surgical trauma, and intraneural and extraneural compressive lesions. • Six anatomical features contribute to the vulnerability of the peroneal nerve around the knee. • MR signs of muscle denervation within the anterior compartment are important secondary signs for evaluation of the peroneal nerve. • The most common lesions of the peroneal nerve are traumatic or compressive. • Intraneural ganglia originate from the proximal tibiofibular joint. • Axial T1-weighted images are the best sequence to visualise the peroneal nerve on routine MRI.

View Article: PubMed Central - PubMed

Affiliation: Department of Radiology, AZ Sint-Maarten Duffel-Mechelen, campus Duffel, Rooienberg 25, 2570, Duffel, Belgium.

ABSTRACT

Background: Peroneal nerve lesions are not common and are often exclusively assessed clinically and electromyographically.

Methods: On a routine MR examination without dedicated MR-neurography sequences the peroneal nerve can readily be assessed. Axial T1-weighted sequences are especially helpful as they allow a good differentiation between the nerve and the surrounding fat.

Results: The purpose of this article is to review the normal anatomy and pathologic conditions of the peroneal nerve around the knee.

Conclusion: In the first part the variable anatomy of the peroneal nerve around the knee will be emphasized, followed by a discussion of the clinical findings of peroneal neuropathy and general MR signs of denervation. Six anatomical features may predispose to peroneal neuropathy: paucity of epineural tissue, biceps femoris tunnel, bifurcation level, superficial course around the fibula, fibular tunnel and finally the additional nerve branches. In the second part we discuss the different pathologic conditions: accidental and surgical trauma, and intraneural and extraneural compressive lesions.

Teaching points: • Six anatomical features contribute to the vulnerability of the peroneal nerve around the knee. • MR signs of muscle denervation within the anterior compartment are important secondary signs for evaluation of the peroneal nerve. • The most common lesions of the peroneal nerve are traumatic or compressive. • Intraneural ganglia originate from the proximal tibiofibular joint. • Axial T1-weighted images are the best sequence to visualise the peroneal nerve on routine MRI.

No MeSH data available.


Related in: MedlinePlus