Limits...
Vitamin D induces interleukin-1β expression: paracrine macrophage epithelial signaling controls M. tuberculosis infection.

Verway M, Bouttier M, Wang TT, Carrier M, Calderon M, An BS, Devemy E, McIntosh F, Divangahi M, Behr MA, White JH - PLoS Pathog. (2013)

Bottom Line: We found that the virulent Mtb strain H37Rv elicits a broad host transcriptional response.Secretion of IL-1β from infected cells required the NLRP3/caspase-1 inflammasome.Co-culture significantly prolonged survival of infected macrophages, and 1,25D/infection-induced IL-1β secretion from macrophages reduced mycobacterial burden by stimulating the anti-mycobacterial capacity of co-cultured lung epithelial cells.

View Article: PubMed Central - PubMed

Affiliation: Department of Physiology, McGill University, Montreal, Quebec, Canada.

ABSTRACT
Although vitamin D deficiency is a common feature among patients presenting with active tuberculosis, the full scope of vitamin D action during Mycobacterium tuberculosis (Mtb) infection is poorly understood. As macrophages are the primary site of Mtb infection and are sites of vitamin D signaling, we have used these cells to understand the molecular mechanisms underlying modulation of the immune response by the hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D). We found that the virulent Mtb strain H37Rv elicits a broad host transcriptional response. Transcriptome profiling also revealed that the profile of target genes regulated by 1,25D is substantially altered by infection, and that 1,25D generally boosts infection-stimulated cytokine/chemokine responses. We further focused on the role of 1,25D- and infection-induced interleukin 1β (IL-1β) expression in response to infection. 1,25D enhanced IL-1β expression via a direct transcriptional mechanism. Secretion of IL-1β from infected cells required the NLRP3/caspase-1 inflammasome. The impact of IL-1β production was investigated in a novel model wherein infected macrophages were co-cultured with primary human small airway epithelial cells. Co-culture significantly prolonged survival of infected macrophages, and 1,25D/infection-induced IL-1β secretion from macrophages reduced mycobacterial burden by stimulating the anti-mycobacterial capacity of co-cultured lung epithelial cells. These effects were independent of 1,25D-stimulated autophagy in macrophages but dependent upon epithelial IL1R1 signaling and IL-1β-driven epithelial production of the antimicrobial peptide DEFB4/HBD2. These data provide evidence that the anti-microbial actions of vitamin D extend beyond the macrophage by modulating paracrine signaling, reinforcing its role in innate immune regulation in humans.

Show MeSH

Related in: MedlinePlus

1,25D alters the host macrophage transcriptomic response to Mtb infection.(A) Intensity heat map of genes regulated 5-fold or more during infection in the absence or presence of 1,25D. THP-1 cells were either not infected (NI) or infected with H37Rv (I) and treated with vehicle (DMSO) or 100 nM 1,25D (+D) for 24 hours. Each vertical line represents one gene that was either up-regulated (red), down-regulated (blue) or not affected (white) under each of the conditions relative to uninfected cells not treated with 1,25D, as indicated in the scale. Group 1 represents those genes that were only detected in the NI+D condition, group 2 were those genes that were commonly expressed in both infected conditions, and group 3 represents those genes that were expressed in only one of the infected conditions as a result of 1,25D treatment. (B) Functional clustering heat map of genes selected for a >5-fold change in either the I or I+D condition relative to the NI control as well as having a >1.5-fold difference between the two. Increasing brightness for red and blue denote up- and down-regulation respectively. (C) Highest-rated functions associated with relative expression of I+D/I in genes from B, with a Fisher's exact test p-value threshold set at 0.01 (red line) using Ingenuity Pathways Analysis (IPA) software. (D) Network clustering analysis of genes from B using IPA software. Solid and hashed lines denote known direct and indirect actions between two proteins as determined by IPA. Red and blue denote relative up- or down-regulation of their expression in the I+D condition as compared to the I condition, respectively. Data is derived from analysis of Affymetrix Human Gene 1.0ST microarray chips. mRNA samples for analysis were prepared in triplicate, and data presented is representative of two independent replicates.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3675149&req=5

ppat-1003407-g001: 1,25D alters the host macrophage transcriptomic response to Mtb infection.(A) Intensity heat map of genes regulated 5-fold or more during infection in the absence or presence of 1,25D. THP-1 cells were either not infected (NI) or infected with H37Rv (I) and treated with vehicle (DMSO) or 100 nM 1,25D (+D) for 24 hours. Each vertical line represents one gene that was either up-regulated (red), down-regulated (blue) or not affected (white) under each of the conditions relative to uninfected cells not treated with 1,25D, as indicated in the scale. Group 1 represents those genes that were only detected in the NI+D condition, group 2 were those genes that were commonly expressed in both infected conditions, and group 3 represents those genes that were expressed in only one of the infected conditions as a result of 1,25D treatment. (B) Functional clustering heat map of genes selected for a >5-fold change in either the I or I+D condition relative to the NI control as well as having a >1.5-fold difference between the two. Increasing brightness for red and blue denote up- and down-regulation respectively. (C) Highest-rated functions associated with relative expression of I+D/I in genes from B, with a Fisher's exact test p-value threshold set at 0.01 (red line) using Ingenuity Pathways Analysis (IPA) software. (D) Network clustering analysis of genes from B using IPA software. Solid and hashed lines denote known direct and indirect actions between two proteins as determined by IPA. Red and blue denote relative up- or down-regulation of their expression in the I+D condition as compared to the I condition, respectively. Data is derived from analysis of Affymetrix Human Gene 1.0ST microarray chips. mRNA samples for analysis were prepared in triplicate, and data presented is representative of two independent replicates.

Mentions: In order to understand the host macrophage transcriptional response to Mtb infection, we performed expression profiling studies in PMA-differentiated human THP-1 macrophage cells. Cells were infected with virulent Mtb strain H37Rv (I) or left uninfected (NI), and treated with vehicle (DMSO) or 100 nM 1,25D (+D) for 24 hours. 1,25D treatment of Mtb-infected macrophages produced broad changes in mRNA profiles (Table S1), in which expression of 328 genes was altered at least 5-fold by either infection or 1,25D (Figure 1A, Table S2). A heat map of highly induced transcripts identified three major groups of genes: those that were regulated by 1,25D in uninfected cells, but not in infected cells (group 1), those that were regulated in the same direction in infected cells treated with vehicle or 1,25D (group 2), and those that were regulated in infected cells in either the vehicle or 1,25D treated condition, but not both (group 3). From this it is clear that about half of all 1,25D target genes in uninfected macrophages (NI+D) are not regulated in infected cells, as they do not belong to group 1. Infection resulted in broad changes in transcription, which substantially changed the cohort of genes regulated by 1,25D, indicated by group 3, and the columns that change in intensity in group 2 (Figure 1A).


Vitamin D induces interleukin-1β expression: paracrine macrophage epithelial signaling controls M. tuberculosis infection.

Verway M, Bouttier M, Wang TT, Carrier M, Calderon M, An BS, Devemy E, McIntosh F, Divangahi M, Behr MA, White JH - PLoS Pathog. (2013)

1,25D alters the host macrophage transcriptomic response to Mtb infection.(A) Intensity heat map of genes regulated 5-fold or more during infection in the absence or presence of 1,25D. THP-1 cells were either not infected (NI) or infected with H37Rv (I) and treated with vehicle (DMSO) or 100 nM 1,25D (+D) for 24 hours. Each vertical line represents one gene that was either up-regulated (red), down-regulated (blue) or not affected (white) under each of the conditions relative to uninfected cells not treated with 1,25D, as indicated in the scale. Group 1 represents those genes that were only detected in the NI+D condition, group 2 were those genes that were commonly expressed in both infected conditions, and group 3 represents those genes that were expressed in only one of the infected conditions as a result of 1,25D treatment. (B) Functional clustering heat map of genes selected for a >5-fold change in either the I or I+D condition relative to the NI control as well as having a >1.5-fold difference between the two. Increasing brightness for red and blue denote up- and down-regulation respectively. (C) Highest-rated functions associated with relative expression of I+D/I in genes from B, with a Fisher's exact test p-value threshold set at 0.01 (red line) using Ingenuity Pathways Analysis (IPA) software. (D) Network clustering analysis of genes from B using IPA software. Solid and hashed lines denote known direct and indirect actions between two proteins as determined by IPA. Red and blue denote relative up- or down-regulation of their expression in the I+D condition as compared to the I condition, respectively. Data is derived from analysis of Affymetrix Human Gene 1.0ST microarray chips. mRNA samples for analysis were prepared in triplicate, and data presented is representative of two independent replicates.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3675149&req=5

ppat-1003407-g001: 1,25D alters the host macrophage transcriptomic response to Mtb infection.(A) Intensity heat map of genes regulated 5-fold or more during infection in the absence or presence of 1,25D. THP-1 cells were either not infected (NI) or infected with H37Rv (I) and treated with vehicle (DMSO) or 100 nM 1,25D (+D) for 24 hours. Each vertical line represents one gene that was either up-regulated (red), down-regulated (blue) or not affected (white) under each of the conditions relative to uninfected cells not treated with 1,25D, as indicated in the scale. Group 1 represents those genes that were only detected in the NI+D condition, group 2 were those genes that were commonly expressed in both infected conditions, and group 3 represents those genes that were expressed in only one of the infected conditions as a result of 1,25D treatment. (B) Functional clustering heat map of genes selected for a >5-fold change in either the I or I+D condition relative to the NI control as well as having a >1.5-fold difference between the two. Increasing brightness for red and blue denote up- and down-regulation respectively. (C) Highest-rated functions associated with relative expression of I+D/I in genes from B, with a Fisher's exact test p-value threshold set at 0.01 (red line) using Ingenuity Pathways Analysis (IPA) software. (D) Network clustering analysis of genes from B using IPA software. Solid and hashed lines denote known direct and indirect actions between two proteins as determined by IPA. Red and blue denote relative up- or down-regulation of their expression in the I+D condition as compared to the I condition, respectively. Data is derived from analysis of Affymetrix Human Gene 1.0ST microarray chips. mRNA samples for analysis were prepared in triplicate, and data presented is representative of two independent replicates.
Mentions: In order to understand the host macrophage transcriptional response to Mtb infection, we performed expression profiling studies in PMA-differentiated human THP-1 macrophage cells. Cells were infected with virulent Mtb strain H37Rv (I) or left uninfected (NI), and treated with vehicle (DMSO) or 100 nM 1,25D (+D) for 24 hours. 1,25D treatment of Mtb-infected macrophages produced broad changes in mRNA profiles (Table S1), in which expression of 328 genes was altered at least 5-fold by either infection or 1,25D (Figure 1A, Table S2). A heat map of highly induced transcripts identified three major groups of genes: those that were regulated by 1,25D in uninfected cells, but not in infected cells (group 1), those that were regulated in the same direction in infected cells treated with vehicle or 1,25D (group 2), and those that were regulated in infected cells in either the vehicle or 1,25D treated condition, but not both (group 3). From this it is clear that about half of all 1,25D target genes in uninfected macrophages (NI+D) are not regulated in infected cells, as they do not belong to group 1. Infection resulted in broad changes in transcription, which substantially changed the cohort of genes regulated by 1,25D, indicated by group 3, and the columns that change in intensity in group 2 (Figure 1A).

Bottom Line: We found that the virulent Mtb strain H37Rv elicits a broad host transcriptional response.Secretion of IL-1β from infected cells required the NLRP3/caspase-1 inflammasome.Co-culture significantly prolonged survival of infected macrophages, and 1,25D/infection-induced IL-1β secretion from macrophages reduced mycobacterial burden by stimulating the anti-mycobacterial capacity of co-cultured lung epithelial cells.

View Article: PubMed Central - PubMed

Affiliation: Department of Physiology, McGill University, Montreal, Quebec, Canada.

ABSTRACT
Although vitamin D deficiency is a common feature among patients presenting with active tuberculosis, the full scope of vitamin D action during Mycobacterium tuberculosis (Mtb) infection is poorly understood. As macrophages are the primary site of Mtb infection and are sites of vitamin D signaling, we have used these cells to understand the molecular mechanisms underlying modulation of the immune response by the hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D). We found that the virulent Mtb strain H37Rv elicits a broad host transcriptional response. Transcriptome profiling also revealed that the profile of target genes regulated by 1,25D is substantially altered by infection, and that 1,25D generally boosts infection-stimulated cytokine/chemokine responses. We further focused on the role of 1,25D- and infection-induced interleukin 1β (IL-1β) expression in response to infection. 1,25D enhanced IL-1β expression via a direct transcriptional mechanism. Secretion of IL-1β from infected cells required the NLRP3/caspase-1 inflammasome. The impact of IL-1β production was investigated in a novel model wherein infected macrophages were co-cultured with primary human small airway epithelial cells. Co-culture significantly prolonged survival of infected macrophages, and 1,25D/infection-induced IL-1β secretion from macrophages reduced mycobacterial burden by stimulating the anti-mycobacterial capacity of co-cultured lung epithelial cells. These effects were independent of 1,25D-stimulated autophagy in macrophages but dependent upon epithelial IL1R1 signaling and IL-1β-driven epithelial production of the antimicrobial peptide DEFB4/HBD2. These data provide evidence that the anti-microbial actions of vitamin D extend beyond the macrophage by modulating paracrine signaling, reinforcing its role in innate immune regulation in humans.

Show MeSH
Related in: MedlinePlus