Limits...
Facial morphogenesis of the earliest europeans.

Lacruz RS, de Castro JM, Martinón-Torres M, O'Higgins P, Paine ML, Carbonell E, Arsuaga JL, Bromage TG - PLoS ONE (2013)

Bottom Line: We mapped the distribution of facial growth remodeling activities on the 900-800 ky maxilla ATD6-69 assigned to H. antecessor, and on the 1.5 My cranium KNM-WT 15000, part of an associated skeleton assigned to African H. erectus.These new data point to diversity of patterns of facial growth in fossil Homo.The similarities in facial growth in H. antecessor and H. sapiens suggest that one key developmental change responsible for the characteristic facial morphology of modern humans can be traced back at least to H. antecessor.

View Article: PubMed Central - PubMed

Affiliation: Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, and Department of Anthropology, University of Southern California, Los Angeles, California, United States of America.

ABSTRACT
The modern human face differs from that of our early ancestors in that the facial profile is relatively retracted (orthognathic). This change in facial profile is associated with a characteristic spatial distribution of bone deposition and resorption: growth remodeling. For humans, surface resorption commonly dominates on anteriorly-facing areas of the subnasal region of the maxilla and mandible during development. We mapped the distribution of facial growth remodeling activities on the 900-800 ky maxilla ATD6-69 assigned to H. antecessor, and on the 1.5 My cranium KNM-WT 15000, part of an associated skeleton assigned to African H. erectus. We show that, as in H. sapiens, H. antecessor shows bone resorption over most of the subnasal region. This pattern contrasts with that seen in KNM-WT 15000 where evidence of bone deposition, not resorption, was identified. KNM-WT 15000 is similar to Australopithecus and the extant African apes in this localized area of bone deposition. These new data point to diversity of patterns of facial growth in fossil Homo. The similarities in facial growth in H. antecessor and H. sapiens suggest that one key developmental change responsible for the characteristic facial morphology of modern humans can be traced back at least to H. antecessor.

Show MeSH

Related in: MedlinePlus

Scanning Electron Micrographs of facial growth remodeling in KNM-WT 15000 and ATD6-69.Images “A” and “B” are representative of growth remodeling fields in KNM-WT 15000 (H. erectus). Image “A” shows depository fields in the clivus area of this specimen. For comparison, “B” shows resorptive fields in the anterior aspect of the mandibular ramus of this specimen. Scale bars (A, B) = 50 µm. Images “C” and “D” represent growth remodeling fields of the specimen ATD6-69 (H. antecessor). Image “C” shows depository fields near the zygomatic region whereas “D” is a representative resorptive field in the clivus of ATD6-69. Scale bars (C,D) = 100 µm. All images shown here are taken from high resolution replicas examined in the scanning electron microscope.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3675139&req=5

pone-0065199-g003: Scanning Electron Micrographs of facial growth remodeling in KNM-WT 15000 and ATD6-69.Images “A” and “B” are representative of growth remodeling fields in KNM-WT 15000 (H. erectus). Image “A” shows depository fields in the clivus area of this specimen. For comparison, “B” shows resorptive fields in the anterior aspect of the mandibular ramus of this specimen. Scale bars (A, B) = 50 µm. Images “C” and “D” represent growth remodeling fields of the specimen ATD6-69 (H. antecessor). Image “C” shows depository fields near the zygomatic region whereas “D” is a representative resorptive field in the clivus of ATD6-69. Scale bars (C,D) = 100 µm. All images shown here are taken from high resolution replicas examined in the scanning electron microscope.

Mentions: Figure 2 shows the reconstructed facial morphogenetic maps for the two specimens; areas of net bone deposition are marked by (+) whereas areas of net bone resorption are indicated by the (−) symbol. Only the areas where we could confidently ascertain remodeling activity were marked by (+) or (−). Representative images of the surface micromorphology of areas bone resorption and deposition of the facial skeletons of ATD6-69 and KNM-WT 15000 are shown in Figure 3. Gray circles in Figure 2B indicate the areas spot-mapped using the PCSOM.


Facial morphogenesis of the earliest europeans.

Lacruz RS, de Castro JM, Martinón-Torres M, O'Higgins P, Paine ML, Carbonell E, Arsuaga JL, Bromage TG - PLoS ONE (2013)

Scanning Electron Micrographs of facial growth remodeling in KNM-WT 15000 and ATD6-69.Images “A” and “B” are representative of growth remodeling fields in KNM-WT 15000 (H. erectus). Image “A” shows depository fields in the clivus area of this specimen. For comparison, “B” shows resorptive fields in the anterior aspect of the mandibular ramus of this specimen. Scale bars (A, B) = 50 µm. Images “C” and “D” represent growth remodeling fields of the specimen ATD6-69 (H. antecessor). Image “C” shows depository fields near the zygomatic region whereas “D” is a representative resorptive field in the clivus of ATD6-69. Scale bars (C,D) = 100 µm. All images shown here are taken from high resolution replicas examined in the scanning electron microscope.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3675139&req=5

pone-0065199-g003: Scanning Electron Micrographs of facial growth remodeling in KNM-WT 15000 and ATD6-69.Images “A” and “B” are representative of growth remodeling fields in KNM-WT 15000 (H. erectus). Image “A” shows depository fields in the clivus area of this specimen. For comparison, “B” shows resorptive fields in the anterior aspect of the mandibular ramus of this specimen. Scale bars (A, B) = 50 µm. Images “C” and “D” represent growth remodeling fields of the specimen ATD6-69 (H. antecessor). Image “C” shows depository fields near the zygomatic region whereas “D” is a representative resorptive field in the clivus of ATD6-69. Scale bars (C,D) = 100 µm. All images shown here are taken from high resolution replicas examined in the scanning electron microscope.
Mentions: Figure 2 shows the reconstructed facial morphogenetic maps for the two specimens; areas of net bone deposition are marked by (+) whereas areas of net bone resorption are indicated by the (−) symbol. Only the areas where we could confidently ascertain remodeling activity were marked by (+) or (−). Representative images of the surface micromorphology of areas bone resorption and deposition of the facial skeletons of ATD6-69 and KNM-WT 15000 are shown in Figure 3. Gray circles in Figure 2B indicate the areas spot-mapped using the PCSOM.

Bottom Line: We mapped the distribution of facial growth remodeling activities on the 900-800 ky maxilla ATD6-69 assigned to H. antecessor, and on the 1.5 My cranium KNM-WT 15000, part of an associated skeleton assigned to African H. erectus.These new data point to diversity of patterns of facial growth in fossil Homo.The similarities in facial growth in H. antecessor and H. sapiens suggest that one key developmental change responsible for the characteristic facial morphology of modern humans can be traced back at least to H. antecessor.

View Article: PubMed Central - PubMed

Affiliation: Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, and Department of Anthropology, University of Southern California, Los Angeles, California, United States of America.

ABSTRACT
The modern human face differs from that of our early ancestors in that the facial profile is relatively retracted (orthognathic). This change in facial profile is associated with a characteristic spatial distribution of bone deposition and resorption: growth remodeling. For humans, surface resorption commonly dominates on anteriorly-facing areas of the subnasal region of the maxilla and mandible during development. We mapped the distribution of facial growth remodeling activities on the 900-800 ky maxilla ATD6-69 assigned to H. antecessor, and on the 1.5 My cranium KNM-WT 15000, part of an associated skeleton assigned to African H. erectus. We show that, as in H. sapiens, H. antecessor shows bone resorption over most of the subnasal region. This pattern contrasts with that seen in KNM-WT 15000 where evidence of bone deposition, not resorption, was identified. KNM-WT 15000 is similar to Australopithecus and the extant African apes in this localized area of bone deposition. These new data point to diversity of patterns of facial growth in fossil Homo. The similarities in facial growth in H. antecessor and H. sapiens suggest that one key developmental change responsible for the characteristic facial morphology of modern humans can be traced back at least to H. antecessor.

Show MeSH
Related in: MedlinePlus