Limits...
Global expression profiling of transcription factor genes provides new insights into pathogenicity and stress responses in the rice blast fungus.

Park SY, Choi J, Lim SE, Lee GW, Park J, Kim Y, Kong S, Kim SR, Rho HS, Jeon J, Chi MH, Kim S, Khang CH, Kang S, Lee YH - PLoS Pathog. (2013)

Bottom Line: Mutants of in planta inducible genes not only exhibited sensitive to oxidative stress but also failed to infect rice.These experimental validations clearly demonstrated the value of TF expression patterns in predicting the function of individual TF genes.The regulatory network of TF genes revealed by this study provides a solid foundation for elucidating how M. oryzae regulates its pathogenesis, development, and stress responses.

View Article: PubMed Central - PubMed

Affiliation: Department of Agricultural Biotechnology, Fungal Bioinformatics Laboratory, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea.

ABSTRACT
Because most efforts to understand the molecular mechanisms underpinning fungal pathogenicity have focused on studying the function and role of individual genes, relatively little is known about how transcriptional machineries globally regulate and coordinate the expression of a large group of genes involved in pathogenesis. Using quantitative real-time PCR, we analyzed the expression patterns of 206 transcription factor (TF) genes in the rice blast fungus Magnaporthe oryzae under 32 conditions, including multiple infection-related developmental stages and various abiotic stresses. The resulting data, which are publicly available via an online platform, provided new insights into how these TFs are regulated and potentially work together to control cellular responses to a diverse array of stimuli. High degrees of differential TF expression were observed under the conditions tested. More than 50% of the 206 TF genes were up-regulated during conidiation and/or in conidia. Mutations in ten conidiation-specific TF genes caused defects in conidiation. Expression patterns in planta were similar to those under oxidative stress conditions. Mutants of in planta inducible genes not only exhibited sensitive to oxidative stress but also failed to infect rice. These experimental validations clearly demonstrated the value of TF expression patterns in predicting the function of individual TF genes. The regulatory network of TF genes revealed by this study provides a solid foundation for elucidating how M. oryzae regulates its pathogenesis, development, and stress responses.

Show MeSH

Related in: MedlinePlus

Identification and classification of 495 M.oryzae TF genes.These TF genes were identified based on a domain search using InterProScan (www.ebi.ac.kr/interpro) and belong to 44 families. The TF families are indicated by circles. Domains are noted by small colored rectangles. The TF genes at the overlapping regions between families indicate those possessing more than one TF motif. Two green-colored letters designate the zinc-coordinating DNA-binding motif and helix-turn-helix motif. The blue-colored number (in the circle or at the left side of the circle) indicates the number of genes in each family.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3675110&req=5

ppat-1003350-g001: Identification and classification of 495 M.oryzae TF genes.These TF genes were identified based on a domain search using InterProScan (www.ebi.ac.kr/interpro) and belong to 44 families. The TF families are indicated by circles. Domains are noted by small colored rectangles. The TF genes at the overlapping regions between families indicate those possessing more than one TF motif. Two green-colored letters designate the zinc-coordinating DNA-binding motif and helix-turn-helix motif. The blue-colored number (in the circle or at the left side of the circle) indicates the number of genes in each family.

Mentions: According to the InterPro classification [24], 495 M. oryzae TF genes were grouped into 44 families with the following four families dominating (Figure 1): fungal-specific Zn2Cys6 (141 genes; 28.5%), C2H2 zinc finger (89 genes; 18.0%), HMG (48 genes; 9.7%), and OB-fold (47 genes: 9.5%). Furthermore, 49 genes possessed more than one DNA-binding domains; among these, 29 of 35 homeodomain-like TF genes belonged to six different families. TFs with multiple DNA-binding domains are not unique to M. oryzae and have been detected in animals and plants [1], [25].


Global expression profiling of transcription factor genes provides new insights into pathogenicity and stress responses in the rice blast fungus.

Park SY, Choi J, Lim SE, Lee GW, Park J, Kim Y, Kong S, Kim SR, Rho HS, Jeon J, Chi MH, Kim S, Khang CH, Kang S, Lee YH - PLoS Pathog. (2013)

Identification and classification of 495 M.oryzae TF genes.These TF genes were identified based on a domain search using InterProScan (www.ebi.ac.kr/interpro) and belong to 44 families. The TF families are indicated by circles. Domains are noted by small colored rectangles. The TF genes at the overlapping regions between families indicate those possessing more than one TF motif. Two green-colored letters designate the zinc-coordinating DNA-binding motif and helix-turn-helix motif. The blue-colored number (in the circle or at the left side of the circle) indicates the number of genes in each family.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3675110&req=5

ppat-1003350-g001: Identification and classification of 495 M.oryzae TF genes.These TF genes were identified based on a domain search using InterProScan (www.ebi.ac.kr/interpro) and belong to 44 families. The TF families are indicated by circles. Domains are noted by small colored rectangles. The TF genes at the overlapping regions between families indicate those possessing more than one TF motif. Two green-colored letters designate the zinc-coordinating DNA-binding motif and helix-turn-helix motif. The blue-colored number (in the circle or at the left side of the circle) indicates the number of genes in each family.
Mentions: According to the InterPro classification [24], 495 M. oryzae TF genes were grouped into 44 families with the following four families dominating (Figure 1): fungal-specific Zn2Cys6 (141 genes; 28.5%), C2H2 zinc finger (89 genes; 18.0%), HMG (48 genes; 9.7%), and OB-fold (47 genes: 9.5%). Furthermore, 49 genes possessed more than one DNA-binding domains; among these, 29 of 35 homeodomain-like TF genes belonged to six different families. TFs with multiple DNA-binding domains are not unique to M. oryzae and have been detected in animals and plants [1], [25].

Bottom Line: Mutants of in planta inducible genes not only exhibited sensitive to oxidative stress but also failed to infect rice.These experimental validations clearly demonstrated the value of TF expression patterns in predicting the function of individual TF genes.The regulatory network of TF genes revealed by this study provides a solid foundation for elucidating how M. oryzae regulates its pathogenesis, development, and stress responses.

View Article: PubMed Central - PubMed

Affiliation: Department of Agricultural Biotechnology, Fungal Bioinformatics Laboratory, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea.

ABSTRACT
Because most efforts to understand the molecular mechanisms underpinning fungal pathogenicity have focused on studying the function and role of individual genes, relatively little is known about how transcriptional machineries globally regulate and coordinate the expression of a large group of genes involved in pathogenesis. Using quantitative real-time PCR, we analyzed the expression patterns of 206 transcription factor (TF) genes in the rice blast fungus Magnaporthe oryzae under 32 conditions, including multiple infection-related developmental stages and various abiotic stresses. The resulting data, which are publicly available via an online platform, provided new insights into how these TFs are regulated and potentially work together to control cellular responses to a diverse array of stimuli. High degrees of differential TF expression were observed under the conditions tested. More than 50% of the 206 TF genes were up-regulated during conidiation and/or in conidia. Mutations in ten conidiation-specific TF genes caused defects in conidiation. Expression patterns in planta were similar to those under oxidative stress conditions. Mutants of in planta inducible genes not only exhibited sensitive to oxidative stress but also failed to infect rice. These experimental validations clearly demonstrated the value of TF expression patterns in predicting the function of individual TF genes. The regulatory network of TF genes revealed by this study provides a solid foundation for elucidating how M. oryzae regulates its pathogenesis, development, and stress responses.

Show MeSH
Related in: MedlinePlus