Limits...
Using hierarchical bayes to understand movement, health, and survival in the endangered north atlantic right whale.

Schick RS, Kraus SD, Rolland RM, Knowlton AR, Hamilton PK, Pettis HM, Kenney RD, Clark JS - PLoS ONE (2013)

Bottom Line: We also included the effect of reproductive status and entanglement status on health.The resulting time series of individual health highlight both normal variations in health status and how anthropogenic stressors can affect the health and, ultimately, the survival of individuals.This modeling approach provides information for monitoring of health in right whales, as well as a framework for integrating observational data at the level of individuals up through the health status of the population.

View Article: PubMed Central - PubMed

Affiliation: Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America. rss5@st-andrews.ac.uk

ABSTRACT
Body condition is an indicator of health, and it plays a key role in many vital processes for mammalian species. While evidence of individual body condition can be obtained, these observations provide just brief glimpses into the health state of the animal. An analytical framework is needed for understanding how health of animals changes over space and time.Through knowledge of individual health we can better understand the status of populations. This is particularly important in endangered species, where the consequences of disruption of critical biological functions can push groups of animals rapidly toward extinction. Here we built a state-space model that provides estimates of movement, health, and survival. We assimilated 30+ years of photographic evidence of body condition and three additional visual health parameters in individual North Atlantic right whales, together with survey data, to infer the true health status as it changes over space and time. We also included the effect of reproductive status and entanglement status on health. At the population level, we estimated differential movement patterns in males and females. At the individual level, we estimated the likely animal locations each month. We estimated the relationship between observed and latent health status. Observations of body condition, skin condition, cyamid infestation on the blowholes, and rake marks all provided measures of the true underlying health. The resulting time series of individual health highlight both normal variations in health status and how anthropogenic stressors can affect the health and, ultimately, the survival of individuals. This modeling approach provides information for monitoring of health in right whales, as well as a framework for integrating observational data at the level of individuals up through the health status of the population. This framework can be broadly applied to a variety of systems - terrestrial and marine - where sporadic observations of individuals exist.

Show MeSH

Related in: MedlinePlus

Movement transitions for female right whales.Posterior estimates of transitions made by female right whales between regions over the course of the year. Lines and circles as in Figure 5. In contrast to males, females spend more time in BOF, and have more estimated transitions to SEUS at the end of the year.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3675107&req=5

pone-0064166-g006: Movement transitions for female right whales.Posterior estimates of transitions made by female right whales between regions over the course of the year. Lines and circles as in Figure 5. In contrast to males, females spend more time in BOF, and have more estimated transitions to SEUS at the end of the year.

Mentions: At the population level, we have estimated the paths between regions taken by adult males (Figure 5), adult females (Figure 6), and unknown gender adults (results not shown). Broadly speaking, males and females have relatively similar estimates of movement transitions (Figures 5 & 6). That is, for males and females, movement into and out of the broad geographic regions occurs at approximately the same time (Figures 5 & 6). However, the relative importance of each region, as defined by the duration and timing of entry/exit patterns, differs as a function of gender in certain key areas. For example, the Bay of Fundy (BOF) is one of the main habitat regions for right whales, yet it appears it is more important for females (Figure 6). Note that both in terms of duration in the BOF, and movement to the BOF, females move there earlier and stay longer than males, and more transitions out of BOF are estimated (Figures 5 & 6). In contrast more transitions to the GOM and JL late in the year are estimated for males than females. Females are more likely to move to the SEUS than males in November and December. In addition, we see more estimates of transitions through MIDA for females than for males.


Using hierarchical bayes to understand movement, health, and survival in the endangered north atlantic right whale.

Schick RS, Kraus SD, Rolland RM, Knowlton AR, Hamilton PK, Pettis HM, Kenney RD, Clark JS - PLoS ONE (2013)

Movement transitions for female right whales.Posterior estimates of transitions made by female right whales between regions over the course of the year. Lines and circles as in Figure 5. In contrast to males, females spend more time in BOF, and have more estimated transitions to SEUS at the end of the year.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3675107&req=5

pone-0064166-g006: Movement transitions for female right whales.Posterior estimates of transitions made by female right whales between regions over the course of the year. Lines and circles as in Figure 5. In contrast to males, females spend more time in BOF, and have more estimated transitions to SEUS at the end of the year.
Mentions: At the population level, we have estimated the paths between regions taken by adult males (Figure 5), adult females (Figure 6), and unknown gender adults (results not shown). Broadly speaking, males and females have relatively similar estimates of movement transitions (Figures 5 & 6). That is, for males and females, movement into and out of the broad geographic regions occurs at approximately the same time (Figures 5 & 6). However, the relative importance of each region, as defined by the duration and timing of entry/exit patterns, differs as a function of gender in certain key areas. For example, the Bay of Fundy (BOF) is one of the main habitat regions for right whales, yet it appears it is more important for females (Figure 6). Note that both in terms of duration in the BOF, and movement to the BOF, females move there earlier and stay longer than males, and more transitions out of BOF are estimated (Figures 5 & 6). In contrast more transitions to the GOM and JL late in the year are estimated for males than females. Females are more likely to move to the SEUS than males in November and December. In addition, we see more estimates of transitions through MIDA for females than for males.

Bottom Line: We also included the effect of reproductive status and entanglement status on health.The resulting time series of individual health highlight both normal variations in health status and how anthropogenic stressors can affect the health and, ultimately, the survival of individuals.This modeling approach provides information for monitoring of health in right whales, as well as a framework for integrating observational data at the level of individuals up through the health status of the population.

View Article: PubMed Central - PubMed

Affiliation: Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America. rss5@st-andrews.ac.uk

ABSTRACT
Body condition is an indicator of health, and it plays a key role in many vital processes for mammalian species. While evidence of individual body condition can be obtained, these observations provide just brief glimpses into the health state of the animal. An analytical framework is needed for understanding how health of animals changes over space and time.Through knowledge of individual health we can better understand the status of populations. This is particularly important in endangered species, where the consequences of disruption of critical biological functions can push groups of animals rapidly toward extinction. Here we built a state-space model that provides estimates of movement, health, and survival. We assimilated 30+ years of photographic evidence of body condition and three additional visual health parameters in individual North Atlantic right whales, together with survey data, to infer the true health status as it changes over space and time. We also included the effect of reproductive status and entanglement status on health. At the population level, we estimated differential movement patterns in males and females. At the individual level, we estimated the likely animal locations each month. We estimated the relationship between observed and latent health status. Observations of body condition, skin condition, cyamid infestation on the blowholes, and rake marks all provided measures of the true underlying health. The resulting time series of individual health highlight both normal variations in health status and how anthropogenic stressors can affect the health and, ultimately, the survival of individuals. This modeling approach provides information for monitoring of health in right whales, as well as a framework for integrating observational data at the level of individuals up through the health status of the population. This framework can be broadly applied to a variety of systems - terrestrial and marine - where sporadic observations of individuals exist.

Show MeSH
Related in: MedlinePlus