Limits...
Intestinal parasite prevalence in an area of ethiopia after implementing the SAFE strategy, enhanced outreach services, and health extension program.

King JD, Endeshaw T, Escher E, Alemtaye G, Melaku S, Gelaye W, Worku A, Adugna M, Melak B, Teferi T, Zerihun M, Gesese D, Tadesse Z, Mosher AW, Odermatt P, Utzinger J, Marti H, Ngondi J, Hopkins DR, Emerson PM - PLoS Negl Trop Dis (2013)

Bottom Line: The SAFE strategy aims to reduce transmission of Chlamydia trachomatis through antibiotics, improved hygiene, and sanitation.The prevalence of any of these helminth infections was 24.2% (95% CI 17.6-30.9%) compared to 48.5% as found in a previous study in 1995 using the Kato-Katz technique.We found statistically significant increases in household latrine ownership, use of an improved water source, access to water, and face washing behavior over the past 7 years.

View Article: PubMed Central - PubMed

Affiliation: The Carter Center, Atlanta, Georgia, United States of America.

ABSTRACT

Background: The SAFE strategy aims to reduce transmission of Chlamydia trachomatis through antibiotics, improved hygiene, and sanitation. We integrated assessment of intestinal parasites into large-scale trachoma impact surveys to determine whether documented environmental improvements promoted by a trachoma program had collateral impact on intestinal parasites.

Methodology: We surveyed 99 communities for both trachoma and intestinal parasites (soil-transmitted helminths, Schistosoma mansoni, and intestinal protozoa) in South Gondar, Ethiopia. One child aged 2-15 years per household was randomly selected to provide a stool sample of which about 1 g was fixed in sodium acetate-acetic acid-formalin, concentrated with ether, and examined under a microscope by experienced laboratory technicians.

Principal findings: A total of 2,338 stool specimens were provided, processed, and linked to survey data from 2,657 randomly selected children (88% response). The zonal-level prevalence of Ascaris lumbricoides, hookworm, and Trichuris trichiura was 9.9% (95% confidence interval (CI) 7.2-12.7%), 9.7% (5.9-13.4%), and 2.6% (1.6-3.7%), respectively. The prevalence of S. mansoni was 2.9% (95% CI 0.2-5.5%) but infection was highly focal (range by community from 0-52.4%). The prevalence of any of these helminth infections was 24.2% (95% CI 17.6-30.9%) compared to 48.5% as found in a previous study in 1995 using the Kato-Katz technique. The pathogenic intestinal protozoa Giardia intestinalis and Entamoeba histolytica/E. dispar were found in 23.0% (95% CI 20.3-25.6%) and 11.1% (95% CI 8.9-13.2%) of the surveyed children, respectively. We found statistically significant increases in household latrine ownership, use of an improved water source, access to water, and face washing behavior over the past 7 years.

Conclusions: Improvements in hygiene and sanitation promoted both by the SAFE strategy for trachoma and health extension program combined with preventive chemotherapy during enhanced outreach services are plausible explanations for the changing patterns of intestinal parasite prevalence. The extent of intestinal protozoa infections suggests poor water quality or unsanitary water collection and storage practices and warrants targeted intervention.

Show MeSH

Related in: MedlinePlus

Flow chart of survey sample.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3675016&req=5

pntd-0002223-g002: Flow chart of survey sample.

Mentions: Figure 1 shows the geographical distribution of the 99 surveyed communities across 10 woredas as well as the woredas where schools were surveyed in 1995. A total of 2,355 stool samples were provided and processed from 2,657 randomly selected children aged 2–15 years in surveyed households (88.6%). Figure 2 shows the resulting sample sizes used in the analysis. Mean age of children submitting samples was 6.8 years (standard deviation (SD) 3.6 years) and 48.0% of specimens were from boys.


Intestinal parasite prevalence in an area of ethiopia after implementing the SAFE strategy, enhanced outreach services, and health extension program.

King JD, Endeshaw T, Escher E, Alemtaye G, Melaku S, Gelaye W, Worku A, Adugna M, Melak B, Teferi T, Zerihun M, Gesese D, Tadesse Z, Mosher AW, Odermatt P, Utzinger J, Marti H, Ngondi J, Hopkins DR, Emerson PM - PLoS Negl Trop Dis (2013)

Flow chart of survey sample.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3675016&req=5

pntd-0002223-g002: Flow chart of survey sample.
Mentions: Figure 1 shows the geographical distribution of the 99 surveyed communities across 10 woredas as well as the woredas where schools were surveyed in 1995. A total of 2,355 stool samples were provided and processed from 2,657 randomly selected children aged 2–15 years in surveyed households (88.6%). Figure 2 shows the resulting sample sizes used in the analysis. Mean age of children submitting samples was 6.8 years (standard deviation (SD) 3.6 years) and 48.0% of specimens were from boys.

Bottom Line: The SAFE strategy aims to reduce transmission of Chlamydia trachomatis through antibiotics, improved hygiene, and sanitation.The prevalence of any of these helminth infections was 24.2% (95% CI 17.6-30.9%) compared to 48.5% as found in a previous study in 1995 using the Kato-Katz technique.We found statistically significant increases in household latrine ownership, use of an improved water source, access to water, and face washing behavior over the past 7 years.

View Article: PubMed Central - PubMed

Affiliation: The Carter Center, Atlanta, Georgia, United States of America.

ABSTRACT

Background: The SAFE strategy aims to reduce transmission of Chlamydia trachomatis through antibiotics, improved hygiene, and sanitation. We integrated assessment of intestinal parasites into large-scale trachoma impact surveys to determine whether documented environmental improvements promoted by a trachoma program had collateral impact on intestinal parasites.

Methodology: We surveyed 99 communities for both trachoma and intestinal parasites (soil-transmitted helminths, Schistosoma mansoni, and intestinal protozoa) in South Gondar, Ethiopia. One child aged 2-15 years per household was randomly selected to provide a stool sample of which about 1 g was fixed in sodium acetate-acetic acid-formalin, concentrated with ether, and examined under a microscope by experienced laboratory technicians.

Principal findings: A total of 2,338 stool specimens were provided, processed, and linked to survey data from 2,657 randomly selected children (88% response). The zonal-level prevalence of Ascaris lumbricoides, hookworm, and Trichuris trichiura was 9.9% (95% confidence interval (CI) 7.2-12.7%), 9.7% (5.9-13.4%), and 2.6% (1.6-3.7%), respectively. The prevalence of S. mansoni was 2.9% (95% CI 0.2-5.5%) but infection was highly focal (range by community from 0-52.4%). The prevalence of any of these helminth infections was 24.2% (95% CI 17.6-30.9%) compared to 48.5% as found in a previous study in 1995 using the Kato-Katz technique. The pathogenic intestinal protozoa Giardia intestinalis and Entamoeba histolytica/E. dispar were found in 23.0% (95% CI 20.3-25.6%) and 11.1% (95% CI 8.9-13.2%) of the surveyed children, respectively. We found statistically significant increases in household latrine ownership, use of an improved water source, access to water, and face washing behavior over the past 7 years.

Conclusions: Improvements in hygiene and sanitation promoted both by the SAFE strategy for trachoma and health extension program combined with preventive chemotherapy during enhanced outreach services are plausible explanations for the changing patterns of intestinal parasite prevalence. The extent of intestinal protozoa infections suggests poor water quality or unsanitary water collection and storage practices and warrants targeted intervention.

Show MeSH
Related in: MedlinePlus