Limits...
Schistosomiasis control using piplartine against Biomphalaria glabrata at different developmental stages.

Rapado LN, Pinheiro Ade S, Lopes PO, Fokoue HH, Scotti MT, Marques JV, Ohlweiler FP, Borrely SI, Pereira CA, Kato MJ, Nakano E, Yamaguchi LF - PLoS Negl Trop Dis (2013)

Bottom Line: These results indicated that the high molluscicidal activity displayed by root extracts (LC50 20.28 µg/ml) was due to the presence of piplartine, a well-known biologically-active amide.The toxicity to these organisms was less compared with the toxicity of niclosamide, a commercial molluscicide.Thus, piplartine is a potential candidate for a natural molluscicide that has been extracted from a tropical plant species and showed less toxic to environment.

View Article: PubMed Central - PubMed

Affiliation: Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil.

ABSTRACT

Background: Schistosomiasis is one of the most significant diseases in tropical countries and affects almost 200 million people worldwide. The application of molluscicides to eliminate the parasite's intermediate host, Biomphalaria glabrata, from infected water supplies is one strategy currently being used to control the disease. Previous studies have shown a potent molluscicidal activity of crude extracts from Piper species, with extracts from Piper tuberculatum being among the most active.

Methods and findings: The molluscicidal activity of P. tuberculatum was monitored on methanolic extracts from different organs (roots, leaves, fruit and stems). The compounds responsible for the molluscicidal activity were identified using (1)H NMR and ESIMS data and multivariate analyses, including principal component analysis and partial least squares. These results indicated that the high molluscicidal activity displayed by root extracts (LC50 20.28 µg/ml) was due to the presence of piplartine, a well-known biologically-active amide. Piplartine was isolated from P. tuberculatum root extracts, and the molluscicidal activity of this compound on adults and embryos of B. glabrata was determined. The compound displayed potent activity against all developmental stages of B. glabrata. Next, the environmental toxicity of piplartine was evaluated using the microcrustacean Daphnia similis (LC50 7.32 µg/ml) and the fish Danio rerio (1.69 µg/ml). The toxicity to these organisms was less compared with the toxicity of niclosamide, a commercial molluscicide.

Conclusions: The development of a new, natural molluscicide is highly desirable, particularly because the commercially available molluscicide niclosamide is highly toxic to some organisms in the environment (LC50 0.25 µg/ml to D. similis and 0.12 µg/ml to D. rerio). Thus, piplartine is a potential candidate for a natural molluscicide that has been extracted from a tropical plant species and showed less toxic to environment.

Show MeSH

Related in: MedlinePlus

Morphological changes in D. rerio during the 48 hours of exposure to piplartine.A) Leakage of the ocular pigment caused by 1.8 ppm piplartine, B) tissue alterations on the head and mouth caused by 1.6 µg/ml piplartine, C) exophthalmia and hemorrhage caused by 1.4 µg/ml piplartine and D) control group.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3675008&req=5

pntd-0002251-g004: Morphological changes in D. rerio during the 48 hours of exposure to piplartine.A) Leakage of the ocular pigment caused by 1.8 ppm piplartine, B) tissue alterations on the head and mouth caused by 1.6 µg/ml piplartine, C) exophthalmia and hemorrhage caused by 1.4 µg/ml piplartine and D) control group.

Mentions: Given the effectiveness of piplartine as a molluscicide and ovicide, the acute toxicity of the compound to D. similis and D. rerio was investigated (Table 4). Piplartine was nearly five times more toxic to D. rerio than to D. similis. Lethality and immobilization were the endpoints applied to estimate LC50 to D. rerio and D. similis, respectively. General abnormalities were also recorded during the D. rerio experiments, such as erratic swimming, extended abdomen, body hemorrhaging, red pigmented spots, exophthalmia and abnormal head shape (Figure 4). These effects were transient and only occurred during the 48 h exposure period.


Schistosomiasis control using piplartine against Biomphalaria glabrata at different developmental stages.

Rapado LN, Pinheiro Ade S, Lopes PO, Fokoue HH, Scotti MT, Marques JV, Ohlweiler FP, Borrely SI, Pereira CA, Kato MJ, Nakano E, Yamaguchi LF - PLoS Negl Trop Dis (2013)

Morphological changes in D. rerio during the 48 hours of exposure to piplartine.A) Leakage of the ocular pigment caused by 1.8 ppm piplartine, B) tissue alterations on the head and mouth caused by 1.6 µg/ml piplartine, C) exophthalmia and hemorrhage caused by 1.4 µg/ml piplartine and D) control group.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3675008&req=5

pntd-0002251-g004: Morphological changes in D. rerio during the 48 hours of exposure to piplartine.A) Leakage of the ocular pigment caused by 1.8 ppm piplartine, B) tissue alterations on the head and mouth caused by 1.6 µg/ml piplartine, C) exophthalmia and hemorrhage caused by 1.4 µg/ml piplartine and D) control group.
Mentions: Given the effectiveness of piplartine as a molluscicide and ovicide, the acute toxicity of the compound to D. similis and D. rerio was investigated (Table 4). Piplartine was nearly five times more toxic to D. rerio than to D. similis. Lethality and immobilization were the endpoints applied to estimate LC50 to D. rerio and D. similis, respectively. General abnormalities were also recorded during the D. rerio experiments, such as erratic swimming, extended abdomen, body hemorrhaging, red pigmented spots, exophthalmia and abnormal head shape (Figure 4). These effects were transient and only occurred during the 48 h exposure period.

Bottom Line: These results indicated that the high molluscicidal activity displayed by root extracts (LC50 20.28 µg/ml) was due to the presence of piplartine, a well-known biologically-active amide.The toxicity to these organisms was less compared with the toxicity of niclosamide, a commercial molluscicide.Thus, piplartine is a potential candidate for a natural molluscicide that has been extracted from a tropical plant species and showed less toxic to environment.

View Article: PubMed Central - PubMed

Affiliation: Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil.

ABSTRACT

Background: Schistosomiasis is one of the most significant diseases in tropical countries and affects almost 200 million people worldwide. The application of molluscicides to eliminate the parasite's intermediate host, Biomphalaria glabrata, from infected water supplies is one strategy currently being used to control the disease. Previous studies have shown a potent molluscicidal activity of crude extracts from Piper species, with extracts from Piper tuberculatum being among the most active.

Methods and findings: The molluscicidal activity of P. tuberculatum was monitored on methanolic extracts from different organs (roots, leaves, fruit and stems). The compounds responsible for the molluscicidal activity were identified using (1)H NMR and ESIMS data and multivariate analyses, including principal component analysis and partial least squares. These results indicated that the high molluscicidal activity displayed by root extracts (LC50 20.28 µg/ml) was due to the presence of piplartine, a well-known biologically-active amide. Piplartine was isolated from P. tuberculatum root extracts, and the molluscicidal activity of this compound on adults and embryos of B. glabrata was determined. The compound displayed potent activity against all developmental stages of B. glabrata. Next, the environmental toxicity of piplartine was evaluated using the microcrustacean Daphnia similis (LC50 7.32 µg/ml) and the fish Danio rerio (1.69 µg/ml). The toxicity to these organisms was less compared with the toxicity of niclosamide, a commercial molluscicide.

Conclusions: The development of a new, natural molluscicide is highly desirable, particularly because the commercially available molluscicide niclosamide is highly toxic to some organisms in the environment (LC50 0.25 µg/ml to D. similis and 0.12 µg/ml to D. rerio). Thus, piplartine is a potential candidate for a natural molluscicide that has been extracted from a tropical plant species and showed less toxic to environment.

Show MeSH
Related in: MedlinePlus