Limits...
Pressure-sensitive paint measurements of transient shock phenomena.

Quinn MK, Kontis K - Sensors (Basel) (2013)

Bottom Line: Illumination comes from two high-intensity broadband Xenon arc light sources with short-pass filters.The sample is imaged at 100 kHz using a Vision Research Phantom V710 in conjunction with a pair of long and short pass filters, creating a band.The PSP results are compared with numerical simulations of the flow using the commercial CFD package Fluent as part of ANSYS 13 for two Mach numbers.

View Article: PubMed Central - PubMed

Affiliation: Aero-Physics Laboratory, University of Manchester, Manchester, UK. mark.quinn-2@postgrad.manchester.ac.uk

ABSTRACT
Measurements of the global pressure field created by shock wave diffraction have been captured optically using a porous pressure-sensitive paint. The pressure field created by a diffracting shock wave shows large increases and decreases in pressure and can be reasonably accurately captured using CFD. The substrate, a thin-layer chromatography (TLC) plate, has been dipped in a luminophore solution. TLC plates are readily available and easy to prepare. Illumination comes from two high-intensity broadband Xenon arc light sources with short-pass filters. The sample is imaged at 100 kHz using a Vision Research Phantom V710 in conjunction with a pair of long and short pass filters, creating a band. The PSP results are compared with numerical simulations of the flow using the commercial CFD package Fluent as part of ANSYS 13 for two Mach numbers.

No MeSH data available.


Related in: MedlinePlus

Mechanical damage to several initial TLC plates after 10 runs of the shock tube.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3673091&req=5

f3-sensors-13-04404: Mechanical damage to several initial TLC plates after 10 runs of the shock tube.

Mentions: The method of application of pressure-sensitive paint, specifically the substrate to which it is applied, is critical as the response times can vary by 6 orders of magnitude. For example, the polymer formulation used by Carroll et al. [21] has a 90% response time of 480–2,500 ms whereas the anodised aluminium substrate used by Sakaue and Sullivan responds in under 0.4 ms [4]. An investigation into the performance of different substrates was performed by Quinn et al. [10]. Their results showed that, of the porous substrates, thin-layer chromatography (TLC) plates gave the highest signal output and sensitivity. However, TLC plates are extremely fragile and are only suited to very simple geometries. In such a violent environment as a shock tube, the TLC plates begin to fracture after approximately 10 individual runs (see Figure 3), limiting their repeated use. Uniformity of the PSP surface is critical in PSP measurements, as any inhomogeneities can produce strong differences between wind-on and -off images. Also, Figure 3 shows that areas of the silica gel substrate have fractured off, leaving no PSP present, meaning no signal can be measured in this region.


Pressure-sensitive paint measurements of transient shock phenomena.

Quinn MK, Kontis K - Sensors (Basel) (2013)

Mechanical damage to several initial TLC plates after 10 runs of the shock tube.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3673091&req=5

f3-sensors-13-04404: Mechanical damage to several initial TLC plates after 10 runs of the shock tube.
Mentions: The method of application of pressure-sensitive paint, specifically the substrate to which it is applied, is critical as the response times can vary by 6 orders of magnitude. For example, the polymer formulation used by Carroll et al. [21] has a 90% response time of 480–2,500 ms whereas the anodised aluminium substrate used by Sakaue and Sullivan responds in under 0.4 ms [4]. An investigation into the performance of different substrates was performed by Quinn et al. [10]. Their results showed that, of the porous substrates, thin-layer chromatography (TLC) plates gave the highest signal output and sensitivity. However, TLC plates are extremely fragile and are only suited to very simple geometries. In such a violent environment as a shock tube, the TLC plates begin to fracture after approximately 10 individual runs (see Figure 3), limiting their repeated use. Uniformity of the PSP surface is critical in PSP measurements, as any inhomogeneities can produce strong differences between wind-on and -off images. Also, Figure 3 shows that areas of the silica gel substrate have fractured off, leaving no PSP present, meaning no signal can be measured in this region.

Bottom Line: Illumination comes from two high-intensity broadband Xenon arc light sources with short-pass filters.The sample is imaged at 100 kHz using a Vision Research Phantom V710 in conjunction with a pair of long and short pass filters, creating a band.The PSP results are compared with numerical simulations of the flow using the commercial CFD package Fluent as part of ANSYS 13 for two Mach numbers.

View Article: PubMed Central - PubMed

Affiliation: Aero-Physics Laboratory, University of Manchester, Manchester, UK. mark.quinn-2@postgrad.manchester.ac.uk

ABSTRACT
Measurements of the global pressure field created by shock wave diffraction have been captured optically using a porous pressure-sensitive paint. The pressure field created by a diffracting shock wave shows large increases and decreases in pressure and can be reasonably accurately captured using CFD. The substrate, a thin-layer chromatography (TLC) plate, has been dipped in a luminophore solution. TLC plates are readily available and easy to prepare. Illumination comes from two high-intensity broadband Xenon arc light sources with short-pass filters. The sample is imaged at 100 kHz using a Vision Research Phantom V710 in conjunction with a pair of long and short pass filters, creating a band. The PSP results are compared with numerical simulations of the flow using the commercial CFD package Fluent as part of ANSYS 13 for two Mach numbers.

No MeSH data available.


Related in: MedlinePlus