Limits...
A novel flexible room temperature ethanol gas sensor based on SnO2 doped poly-diallyldimethylammonium chloride.

Zhan S, Li D, Liang S, Chen X, Li X - Sensors (Basel) (2013)

Bottom Line: The polyimide (PI) substrate-based sensor was formed by depositing a mixture of SnO2 nanopowder and poly-diallyldimethylammonium chloride (PDDAC) on as-patterned interdigitated electrodes.We found that the response of SnO2-PDDAC sensor is significantly higher than that of SnO2 alone, indicating that the doping with PDDAC effectively improved the sensor performance.The SnO2-PDDAC sensor has a detection limit of 10 ppm at room temperature and shows good selectivity to ethanol, making it very suitable for monitoring drunken driving.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Nano-Fabrication and Novel Devices Integrated Technology, Institute of Microelectronics, Chinese Academy of Science, Beijing 100029, China. zhanshuang@ime.ac.cn

ABSTRACT
A novel flexible room temperature ethanol gas sensor was fabricated and demonstrated in this paper. The polyimide (PI) substrate-based sensor was formed by depositing a mixture of SnO2 nanopowder and poly-diallyldimethylammonium chloride (PDDAC) on as-patterned interdigitated electrodes. PDDAC acted both as the binder, promoting the adhesion between SnO2 and the flexible PI substrate, and the dopant. We found that the response of SnO2-PDDAC sensor is significantly higher than that of SnO2 alone, indicating that the doping with PDDAC effectively improved the sensor performance. The SnO2-PDDAC sensor has a detection limit of 10 ppm at room temperature and shows good selectivity to ethanol, making it very suitable for monitoring drunken driving. The microstructures of the samples were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared spectra (FT-IR), and the sensing mechanism is also discussed in detail.

No MeSH data available.


Related in: MedlinePlus

FT-IR spectra of SnO2, PDDAC and SnO2-PDDAC film.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3673089&req=5

f8-sensors-13-04378: FT-IR spectra of SnO2, PDDAC and SnO2-PDDAC film.

Mentions: The composition of the sensitive films was investigated by FT-IR. As shown in Figure 8, due to the fact the SnO2 is capsulated in PDDAC, the characteristic peaks of SnO2 are not evident in the spectrum of the SnO2-PDDAC film. The broad bands around 3,420 cm−1 and the band centered at 1,636 cm−1 found in the materials are assigned to O-H stretching, which is caused by the vibrations of adsorbed water molecules. Due to the hygroscopicity of PDDAC, the band of PDDAC at 3,420 cm−1 observed is higher than that of SnO2-PDDAC and tin oxide film. The stretching vibration of N-C bond is centered at 2,112 cm−1, and the band centered at 675 cm−1 is attributed to the framework vibrations of tin oxide [27]. In addition to the bands ascribed to SnO2 species, bands at 2,936 cm−1 and 3,038 cm−1 observed in the PDDAC and SnO2-PDDAC spectra are the C-H stretching vibration adsorption.


A novel flexible room temperature ethanol gas sensor based on SnO2 doped poly-diallyldimethylammonium chloride.

Zhan S, Li D, Liang S, Chen X, Li X - Sensors (Basel) (2013)

FT-IR spectra of SnO2, PDDAC and SnO2-PDDAC film.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3673089&req=5

f8-sensors-13-04378: FT-IR spectra of SnO2, PDDAC and SnO2-PDDAC film.
Mentions: The composition of the sensitive films was investigated by FT-IR. As shown in Figure 8, due to the fact the SnO2 is capsulated in PDDAC, the characteristic peaks of SnO2 are not evident in the spectrum of the SnO2-PDDAC film. The broad bands around 3,420 cm−1 and the band centered at 1,636 cm−1 found in the materials are assigned to O-H stretching, which is caused by the vibrations of adsorbed water molecules. Due to the hygroscopicity of PDDAC, the band of PDDAC at 3,420 cm−1 observed is higher than that of SnO2-PDDAC and tin oxide film. The stretching vibration of N-C bond is centered at 2,112 cm−1, and the band centered at 675 cm−1 is attributed to the framework vibrations of tin oxide [27]. In addition to the bands ascribed to SnO2 species, bands at 2,936 cm−1 and 3,038 cm−1 observed in the PDDAC and SnO2-PDDAC spectra are the C-H stretching vibration adsorption.

Bottom Line: The polyimide (PI) substrate-based sensor was formed by depositing a mixture of SnO2 nanopowder and poly-diallyldimethylammonium chloride (PDDAC) on as-patterned interdigitated electrodes.We found that the response of SnO2-PDDAC sensor is significantly higher than that of SnO2 alone, indicating that the doping with PDDAC effectively improved the sensor performance.The SnO2-PDDAC sensor has a detection limit of 10 ppm at room temperature and shows good selectivity to ethanol, making it very suitable for monitoring drunken driving.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Nano-Fabrication and Novel Devices Integrated Technology, Institute of Microelectronics, Chinese Academy of Science, Beijing 100029, China. zhanshuang@ime.ac.cn

ABSTRACT
A novel flexible room temperature ethanol gas sensor was fabricated and demonstrated in this paper. The polyimide (PI) substrate-based sensor was formed by depositing a mixture of SnO2 nanopowder and poly-diallyldimethylammonium chloride (PDDAC) on as-patterned interdigitated electrodes. PDDAC acted both as the binder, promoting the adhesion between SnO2 and the flexible PI substrate, and the dopant. We found that the response of SnO2-PDDAC sensor is significantly higher than that of SnO2 alone, indicating that the doping with PDDAC effectively improved the sensor performance. The SnO2-PDDAC sensor has a detection limit of 10 ppm at room temperature and shows good selectivity to ethanol, making it very suitable for monitoring drunken driving. The microstructures of the samples were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared spectra (FT-IR), and the sensing mechanism is also discussed in detail.

No MeSH data available.


Related in: MedlinePlus