Limits...
Camera sensor arrangement for crop/weed detection accuracy in agronomic images.

Romeo J, Guerrero JM, Montalvo M, Emmi L, Guijarro M, Gonzalez-de-Santos P, Pajares G - Sensors (Basel) (2013)

Bottom Line: In Precision Agriculture, images coming from camera-based sensors are commonly used for weed identification and crop line detection, either to apply specific treatments or for vehicle guidance purposes.Accuracy of identification and detection is an important issue to be addressed in image processing.There are two main types of parameters affecting the accuracy of the images, namely: (a) extrinsic, related to the sensor's positioning in the tractor; (b) intrinsic, related to the sensor specifications, such as CCD resolution, focal length or iris aperture, among others.

View Article: PubMed Central - PubMed

Affiliation: Department of Software Engineering and Artificial Intelligence, Faculty of Informatics, Complutense University, Madrid 28040, Spain. jromeo99@hotmail.com

ABSTRACT
In Precision Agriculture, images coming from camera-based sensors are commonly used for weed identification and crop line detection, either to apply specific treatments or for vehicle guidance purposes. Accuracy of identification and detection is an important issue to be addressed in image processing. There are two main types of parameters affecting the accuracy of the images, namely: (a) extrinsic, related to the sensor's positioning in the tractor; (b) intrinsic, related to the sensor specifications, such as CCD resolution, focal length or iris aperture, among others. Moreover, in agricultural applications, the uncontrolled illumination, existing in outdoor environments, is also an important factor affecting the image accuracy. This paper is exclusively focused on two main issues, always with the goal to achieve the highest image accuracy in Precision Agriculture applications, making the following two main contributions: (a) camera sensor arrangement, to adjust extrinsic parameters and (b) design of strategies for controlling the adverse illumination effects.

Show MeSH

Related in: MedlinePlus

Number of pixels n, against α, for the five different heights h, at a fixed distance d = 3 m.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3673087&req=5

f7-sensors-13-04348: Number of pixels n, against α, for the five different heights h, at a fixed distance d = 3 m.

Mentions: Once we know that distance is a critical parameter for accuracy, we fix the distance of the ROI at 3 m and see how n varies with the other two parameters. Fixing distances away from the tractor we graph the different values of n depending on the pitch angle (α) and the height (h) of the camera (Figure 7).


Camera sensor arrangement for crop/weed detection accuracy in agronomic images.

Romeo J, Guerrero JM, Montalvo M, Emmi L, Guijarro M, Gonzalez-de-Santos P, Pajares G - Sensors (Basel) (2013)

Number of pixels n, against α, for the five different heights h, at a fixed distance d = 3 m.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3673087&req=5

f7-sensors-13-04348: Number of pixels n, against α, for the five different heights h, at a fixed distance d = 3 m.
Mentions: Once we know that distance is a critical parameter for accuracy, we fix the distance of the ROI at 3 m and see how n varies with the other two parameters. Fixing distances away from the tractor we graph the different values of n depending on the pitch angle (α) and the height (h) of the camera (Figure 7).

Bottom Line: In Precision Agriculture, images coming from camera-based sensors are commonly used for weed identification and crop line detection, either to apply specific treatments or for vehicle guidance purposes.Accuracy of identification and detection is an important issue to be addressed in image processing.There are two main types of parameters affecting the accuracy of the images, namely: (a) extrinsic, related to the sensor's positioning in the tractor; (b) intrinsic, related to the sensor specifications, such as CCD resolution, focal length or iris aperture, among others.

View Article: PubMed Central - PubMed

Affiliation: Department of Software Engineering and Artificial Intelligence, Faculty of Informatics, Complutense University, Madrid 28040, Spain. jromeo99@hotmail.com

ABSTRACT
In Precision Agriculture, images coming from camera-based sensors are commonly used for weed identification and crop line detection, either to apply specific treatments or for vehicle guidance purposes. Accuracy of identification and detection is an important issue to be addressed in image processing. There are two main types of parameters affecting the accuracy of the images, namely: (a) extrinsic, related to the sensor's positioning in the tractor; (b) intrinsic, related to the sensor specifications, such as CCD resolution, focal length or iris aperture, among others. Moreover, in agricultural applications, the uncontrolled illumination, existing in outdoor environments, is also an important factor affecting the image accuracy. This paper is exclusively focused on two main issues, always with the goal to achieve the highest image accuracy in Precision Agriculture applications, making the following two main contributions: (a) camera sensor arrangement, to adjust extrinsic parameters and (b) design of strategies for controlling the adverse illumination effects.

Show MeSH
Related in: MedlinePlus