Limits...
A two-dimensional laser scanning mirror using motion-decoupling electromagnetic actuators.

Shin BH, Oh D, Lee SY - Sensors (Basel) (2013)

Bottom Line: The upper moving-coil type actuator to rotate only the mirror part has the optical reflection angle of 15.7° at 10 Hz, 90° at the resonance frequency of 60 Hz at ±3 V (±70 mA) and the bandwidth of 91 Hz.The lower moving-magnet type actuator has the optical reflection angle of 16.20° at 10 Hz and 50° at the resonance frequency of 60 Hz at ±5 V (±34 mA) and the bandwidth of 88 Hz.The proposed compact and simple 2-D scanning mirror has advantages of large 2-D angular deflections, wide frequency bandwidth and low manufacturing cost.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul 121-742, Korea.

ABSTRACT
This work proposes a two-dimensional (2-D) laser scanning mirror with a novel actuating structure composed of one magnet and two coils. The mirror-actuating device generates decoupled scanning motions about two orthogonal axes by combining two electromagnetic actuators of the conventional moving-coil and the moving-magnet types. We implement a finite element analysis to calculate magnetic flux in the electromagnetic system and experiments using a prototype with the overall size of 22 mm (W) × 20 mm (D) × 15 mm (H) for the mirror size of 8 mm × 8 mm. The upper moving-coil type actuator to rotate only the mirror part has the optical reflection angle of 15.7° at 10 Hz, 90° at the resonance frequency of 60 Hz at ±3 V (±70 mA) and the bandwidth of 91 Hz. The lower moving-magnet type actuator has the optical reflection angle of 16.20° at 10 Hz and 50° at the resonance frequency of 60 Hz at ±5 V (±34 mA) and the bandwidth of 88 Hz. The proposed compact and simple 2-D scanning mirror has advantages of large 2-D angular deflections, wide frequency bandwidth and low manufacturing cost.

No MeSH data available.


Related in: MedlinePlus

Frequency response plots of the proposed scanning mirror actuator. (a) X-axis, (b) Y-axis.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3673076&req=5

f7-sensors-13-04146: Frequency response plots of the proposed scanning mirror actuator. (a) X-axis, (b) Y-axis.

Mentions: Furthermore, we performed experiments to measure the dynamic performances of the actuator system using the sinusoidal input. The experimental frequency response of the scanning mirror is plotted in Figure 7. It is also compared with the theoretical frequency responses by the Equation (5) for two cases using simulation and experimental data of the restoring and torque constants Km and Kt. The upper moving-coil type actuator along X-axis has the resonance frequency of 60 Hz with the input voltage of ±3 V (±70 mA) which is the peak value in Figure 7(a). The optical reflection angle at the resonance frequency is about 90 degrees. In control systems, the bandwidth is defined as the frequency at which the frequency response has declined 3 dB (0.708 ratio) from its low-frequency value. Therefore, the frequency response plot in Figure 7(a) shows that the corresponding bandwidth is calculated to be about 91 Hz where the magnitude has a lower 3 dB than −28 dB at the low-frequency region. Similarly, the lower moving-magnet type actuator around Y-axis has the optical reflection angle of 50 degrees at the resonance frequency of 60 Hz when the applied voltage is ±5 V (±34 mA). It has the bandwidth of 88 Hz where the frequency response plot crosses the line of the magnitude−38 dB subtracting 3dB from the low frequency value (−35 dB) in Figure 7(b).


A two-dimensional laser scanning mirror using motion-decoupling electromagnetic actuators.

Shin BH, Oh D, Lee SY - Sensors (Basel) (2013)

Frequency response plots of the proposed scanning mirror actuator. (a) X-axis, (b) Y-axis.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3673076&req=5

f7-sensors-13-04146: Frequency response plots of the proposed scanning mirror actuator. (a) X-axis, (b) Y-axis.
Mentions: Furthermore, we performed experiments to measure the dynamic performances of the actuator system using the sinusoidal input. The experimental frequency response of the scanning mirror is plotted in Figure 7. It is also compared with the theoretical frequency responses by the Equation (5) for two cases using simulation and experimental data of the restoring and torque constants Km and Kt. The upper moving-coil type actuator along X-axis has the resonance frequency of 60 Hz with the input voltage of ±3 V (±70 mA) which is the peak value in Figure 7(a). The optical reflection angle at the resonance frequency is about 90 degrees. In control systems, the bandwidth is defined as the frequency at which the frequency response has declined 3 dB (0.708 ratio) from its low-frequency value. Therefore, the frequency response plot in Figure 7(a) shows that the corresponding bandwidth is calculated to be about 91 Hz where the magnitude has a lower 3 dB than −28 dB at the low-frequency region. Similarly, the lower moving-magnet type actuator around Y-axis has the optical reflection angle of 50 degrees at the resonance frequency of 60 Hz when the applied voltage is ±5 V (±34 mA). It has the bandwidth of 88 Hz where the frequency response plot crosses the line of the magnitude−38 dB subtracting 3dB from the low frequency value (−35 dB) in Figure 7(b).

Bottom Line: The upper moving-coil type actuator to rotate only the mirror part has the optical reflection angle of 15.7° at 10 Hz, 90° at the resonance frequency of 60 Hz at ±3 V (±70 mA) and the bandwidth of 91 Hz.The lower moving-magnet type actuator has the optical reflection angle of 16.20° at 10 Hz and 50° at the resonance frequency of 60 Hz at ±5 V (±34 mA) and the bandwidth of 88 Hz.The proposed compact and simple 2-D scanning mirror has advantages of large 2-D angular deflections, wide frequency bandwidth and low manufacturing cost.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul 121-742, Korea.

ABSTRACT
This work proposes a two-dimensional (2-D) laser scanning mirror with a novel actuating structure composed of one magnet and two coils. The mirror-actuating device generates decoupled scanning motions about two orthogonal axes by combining two electromagnetic actuators of the conventional moving-coil and the moving-magnet types. We implement a finite element analysis to calculate magnetic flux in the electromagnetic system and experiments using a prototype with the overall size of 22 mm (W) × 20 mm (D) × 15 mm (H) for the mirror size of 8 mm × 8 mm. The upper moving-coil type actuator to rotate only the mirror part has the optical reflection angle of 15.7° at 10 Hz, 90° at the resonance frequency of 60 Hz at ±3 V (±70 mA) and the bandwidth of 91 Hz. The lower moving-magnet type actuator has the optical reflection angle of 16.20° at 10 Hz and 50° at the resonance frequency of 60 Hz at ±5 V (±34 mA) and the bandwidth of 88 Hz. The proposed compact and simple 2-D scanning mirror has advantages of large 2-D angular deflections, wide frequency bandwidth and low manufacturing cost.

No MeSH data available.


Related in: MedlinePlus