Limits...
Frame synchronization of high-speed vision sensors with respect to temporally encoded illumination in highly dynamic environments.

Hou L, Kagami S, Hashimoto K - Sensors (Basel) (2013)

Bottom Line: Based on signal normalization, Manchester Encoded reference signals carry temporal information owing to serial communication and thus can timestamp the output vision frame.Both simulated and experimental results show satisfactory robustness to various disturbances, such as dynamic targets, fluctuant optical intensity, and unfixed cameras, etc.This result is believed to be applicable to low-cost wireless vision sensor network.

View Article: PubMed Central - PubMed

Affiliation: Department of Automation, Shanghai Jiao Tong University, and Key Laboratory of System Controland Information Processing, Ministry of Education of China, Shanghai 200240, China. lei@ic.is.tohoku.ac.jp

ABSTRACT
The authors propose a Manchester Encoding inspired illumination modulation strategy to properly index the temporally-aligned vision frames, which are successfully synchronized by the LED reference signal. Based on signal normalization, Manchester Encoded reference signals carry temporal information owing to serial communication and thus can timestamp the output vision frame. Both simulated and experimental results show satisfactory robustness to various disturbances, such as dynamic targets, fluctuant optical intensity, and unfixed cameras, etc. The 1,000 Hz vision sensor is locked to 500 Hz temporally modulated LED illumination with only 24 μs jitters. This result is believed to be applicable to low-cost wireless vision sensor network.

No MeSH data available.


Peak-to-peak jitters of the output signal to index 0, 24 μs.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3673073&req=5

f16-sensors-13-04102: Peak-to-peak jitters of the output signal to index 0, 24 μs.

Mentions: Figure 16 and Figure 17 show the successfully synchronized results of the index 0. Both output signals were successfully synchronized to the reference signal with π/2 relative phase shift and twice the frequency. The peak-to-peak jitters of the output signal measured by the oscilloscope were around 24 μs, which are only around 1.2% of the reference period and thus 0.12-rad phase error at worst, which is satisfactory enough for practical use.


Frame synchronization of high-speed vision sensors with respect to temporally encoded illumination in highly dynamic environments.

Hou L, Kagami S, Hashimoto K - Sensors (Basel) (2013)

Peak-to-peak jitters of the output signal to index 0, 24 μs.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3673073&req=5

f16-sensors-13-04102: Peak-to-peak jitters of the output signal to index 0, 24 μs.
Mentions: Figure 16 and Figure 17 show the successfully synchronized results of the index 0. Both output signals were successfully synchronized to the reference signal with π/2 relative phase shift and twice the frequency. The peak-to-peak jitters of the output signal measured by the oscilloscope were around 24 μs, which are only around 1.2% of the reference period and thus 0.12-rad phase error at worst, which is satisfactory enough for practical use.

Bottom Line: Based on signal normalization, Manchester Encoded reference signals carry temporal information owing to serial communication and thus can timestamp the output vision frame.Both simulated and experimental results show satisfactory robustness to various disturbances, such as dynamic targets, fluctuant optical intensity, and unfixed cameras, etc.This result is believed to be applicable to low-cost wireless vision sensor network.

View Article: PubMed Central - PubMed

Affiliation: Department of Automation, Shanghai Jiao Tong University, and Key Laboratory of System Controland Information Processing, Ministry of Education of China, Shanghai 200240, China. lei@ic.is.tohoku.ac.jp

ABSTRACT
The authors propose a Manchester Encoding inspired illumination modulation strategy to properly index the temporally-aligned vision frames, which are successfully synchronized by the LED reference signal. Based on signal normalization, Manchester Encoded reference signals carry temporal information owing to serial communication and thus can timestamp the output vision frame. Both simulated and experimental results show satisfactory robustness to various disturbances, such as dynamic targets, fluctuant optical intensity, and unfixed cameras, etc. The 1,000 Hz vision sensor is locked to 500 Hz temporally modulated LED illumination with only 24 μs jitters. This result is believed to be applicable to low-cost wireless vision sensor network.

No MeSH data available.