Limits...
Biaxial yield surface investigation of polymer-matrix composites.

Ye J, Qiu Y, Zhai Z, He Z - Sensors (Basel) (2013)

Bottom Line: This article presents a numerical technique for computing the biaxial yield surface of polymer-matrix composites with a given microstructure.On this basis, the manufacturing process thermal residual stress and strain rate effect on the biaxial yield surface of composites are considered.The results show that the effect of thermal residual stress on the biaxial yield response is closely dependent on loading conditions.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Ministry of Education for Electronic Equipment Structure Design, Xidian University, Xi'an 710071, China. ronkey6000@sina.com

ABSTRACT
This article presents a numerical technique for computing the biaxial yield surface of polymer-matrix composites with a given microstructure. Generalized Method of Cells in combination with an Improved Bodner-Partom Viscoplastic model is used to compute the inelastic deformation. The validation of presented model is proved by a fiber Bragg gratings (FBGs) strain test system through uniaxial testing under two different strain rate conditions. On this basis, the manufacturing process thermal residual stress and strain rate effect on the biaxial yield surface of composites are considered. The results show that the effect of thermal residual stress on the biaxial yield response is closely dependent on loading conditions. Moreover, biaxial yield strength tends to increase with the increasing strain rate.

No MeSH data available.


Related in: MedlinePlus

Fiber-reinforced composites with periodic array.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3673070&req=5

f1-sensors-13-04051: Fiber-reinforced composites with periodic array.

Mentions: In the most micro-mechanical models, it is supposed that inclusions or fibers present periodic configuration in the composites, as shown in Figure 1. Through choosing a proper unit, a micro-mechanical constitutive model of the composites can be established. On this basis, macro-mechanical behaviors can be acquired from the homogenization theory.


Biaxial yield surface investigation of polymer-matrix composites.

Ye J, Qiu Y, Zhai Z, He Z - Sensors (Basel) (2013)

Fiber-reinforced composites with periodic array.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3673070&req=5

f1-sensors-13-04051: Fiber-reinforced composites with periodic array.
Mentions: In the most micro-mechanical models, it is supposed that inclusions or fibers present periodic configuration in the composites, as shown in Figure 1. Through choosing a proper unit, a micro-mechanical constitutive model of the composites can be established. On this basis, macro-mechanical behaviors can be acquired from the homogenization theory.

Bottom Line: This article presents a numerical technique for computing the biaxial yield surface of polymer-matrix composites with a given microstructure.On this basis, the manufacturing process thermal residual stress and strain rate effect on the biaxial yield surface of composites are considered.The results show that the effect of thermal residual stress on the biaxial yield response is closely dependent on loading conditions.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Ministry of Education for Electronic Equipment Structure Design, Xidian University, Xi'an 710071, China. ronkey6000@sina.com

ABSTRACT
This article presents a numerical technique for computing the biaxial yield surface of polymer-matrix composites with a given microstructure. Generalized Method of Cells in combination with an Improved Bodner-Partom Viscoplastic model is used to compute the inelastic deformation. The validation of presented model is proved by a fiber Bragg gratings (FBGs) strain test system through uniaxial testing under two different strain rate conditions. On this basis, the manufacturing process thermal residual stress and strain rate effect on the biaxial yield surface of composites are considered. The results show that the effect of thermal residual stress on the biaxial yield response is closely dependent on loading conditions. Moreover, biaxial yield strength tends to increase with the increasing strain rate.

No MeSH data available.


Related in: MedlinePlus