Limits...
A randomised controlled phase II trial of pre-operative celecoxib treatment reveals anti-tumour transcriptional response in primary breast cancer.

Brandão RD, Veeck J, Van de Vijver KK, Lindsey P, de Vries B, van Elssen CH, Blok MJ, Keymeulen K, Ayoubi T, Smeets HJ, Tjan-Heijnen VC, Hupperets PS - Breast Cancer Res. (2013)

Bottom Line: We identified 972 and 586 significantly up- and down-regulated genes, respectively, in celecoxib-treated specimens.Between treatment groups, the change in Ki-67 was statistically significant (P = 0.029).The impact on proliferation-associated genes is reflected by a reduction of Ki-67 positive cells.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Introduction: Cyclooxygenase-2 (COX-2) is frequently over-expressed in primary breast cancer. In transgenic breast cancer models, over-expression of COX-2 leads to tumour formation while COX-2 inhibition exerts anti-tumour effects in breast cancer cell lines. To further determine the effect of COX-2 inhibition in primary breast cancer, we aimed to identify transcriptional changes in breast cancer tissues of patients treated with the selective COX-2 inhibitor celecoxib.

Methods: In a single-centre double-blind phase II study, thirty-seven breast cancer patients were randomised to receive either pre-operative celecoxib (400 mg) twice daily for two to three weeks (n = 22) or a placebo according to the same schedule (n = 15). Gene expression in fresh-frozen pre-surgical biopsies (before treatment) and surgical excision specimens (after treatment) was profiled by using Affymetrix arrays. Differentially expressed genes and altered pathways were bioinformatically identified. Expression of selected genes was validated by quantitative PCR (qPCR). Immunohistochemical protein expression analyses of the proliferation marker Ki-67, the apoptosis marker cleaved caspase-3 and the neo-angiogenesis marker CD34 served to evaluate biological response.

Results: We identified 972 and 586 significantly up- and down-regulated genes, respectively, in celecoxib-treated specimens. Significant expression changes in six out of eight genes could be validated by qPCR. Pathway analyses revealed over-representation of deregulated genes in the networks of proliferation, cell cycle, extracellular matrix biology, and inflammatory immune response. The Ki-67 mean change relative to baseline was -29.1% (P = 0.019) and -8.2% (P = 0.384) in the treatment and control arm, respectively. Between treatment groups, the change in Ki-67 was statistically significant (P = 0.029). Cleaved caspase-3 and CD34 expression were not significantly different between the celecoxib-treated and placebo-treated groups.

Conclusions: Short-term COX-2 inhibition by celecoxib induces transcriptional programs supporting anti-tumour activity in primary breast cancer tissue. The impact on proliferation-associated genes is reflected by a reduction of Ki-67 positive cells. Therefore, COX-2 inhibition should be considered as a treatment strategy for further clinical testing in primary breast cancer.

Trial registration: ClinicalTrials.gov NCT01695226.

Show MeSH

Related in: MedlinePlus

qPCR validation of selected genes differentially expressed in celecoxib-treated samples as determined by microarray analysis. Fold-change and the 95% CI (error bars) are shown. Expression of six out of eight genes analysed (indicated by asterisks) was significantly changed in agreement with the microarray analysis.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3672758&req=5

Figure 2: qPCR validation of selected genes differentially expressed in celecoxib-treated samples as determined by microarray analysis. Fold-change and the 95% CI (error bars) are shown. Expression of six out of eight genes analysed (indicated by asterisks) was significantly changed in agreement with the microarray analysis.

Mentions: Two to three weeks of celecoxib treatment significantly altered the expression of 1,558 genes in breast cancer tissues, of which 972 genes were up- and 586 genes were down-regulated after treatment and adjustment to control tissue gene expression. The 50 most strongly up-regulated and down-regulated genes are presented in Additional file 2, Table S2 and Additional file 3, Table S3, respectively. For all of the selected genes, except two, significant expression changes were confirmed by qPCR (Figure 2).


A randomised controlled phase II trial of pre-operative celecoxib treatment reveals anti-tumour transcriptional response in primary breast cancer.

Brandão RD, Veeck J, Van de Vijver KK, Lindsey P, de Vries B, van Elssen CH, Blok MJ, Keymeulen K, Ayoubi T, Smeets HJ, Tjan-Heijnen VC, Hupperets PS - Breast Cancer Res. (2013)

qPCR validation of selected genes differentially expressed in celecoxib-treated samples as determined by microarray analysis. Fold-change and the 95% CI (error bars) are shown. Expression of six out of eight genes analysed (indicated by asterisks) was significantly changed in agreement with the microarray analysis.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3672758&req=5

Figure 2: qPCR validation of selected genes differentially expressed in celecoxib-treated samples as determined by microarray analysis. Fold-change and the 95% CI (error bars) are shown. Expression of six out of eight genes analysed (indicated by asterisks) was significantly changed in agreement with the microarray analysis.
Mentions: Two to three weeks of celecoxib treatment significantly altered the expression of 1,558 genes in breast cancer tissues, of which 972 genes were up- and 586 genes were down-regulated after treatment and adjustment to control tissue gene expression. The 50 most strongly up-regulated and down-regulated genes are presented in Additional file 2, Table S2 and Additional file 3, Table S3, respectively. For all of the selected genes, except two, significant expression changes were confirmed by qPCR (Figure 2).

Bottom Line: We identified 972 and 586 significantly up- and down-regulated genes, respectively, in celecoxib-treated specimens.Between treatment groups, the change in Ki-67 was statistically significant (P = 0.029).The impact on proliferation-associated genes is reflected by a reduction of Ki-67 positive cells.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Introduction: Cyclooxygenase-2 (COX-2) is frequently over-expressed in primary breast cancer. In transgenic breast cancer models, over-expression of COX-2 leads to tumour formation while COX-2 inhibition exerts anti-tumour effects in breast cancer cell lines. To further determine the effect of COX-2 inhibition in primary breast cancer, we aimed to identify transcriptional changes in breast cancer tissues of patients treated with the selective COX-2 inhibitor celecoxib.

Methods: In a single-centre double-blind phase II study, thirty-seven breast cancer patients were randomised to receive either pre-operative celecoxib (400 mg) twice daily for two to three weeks (n = 22) or a placebo according to the same schedule (n = 15). Gene expression in fresh-frozen pre-surgical biopsies (before treatment) and surgical excision specimens (after treatment) was profiled by using Affymetrix arrays. Differentially expressed genes and altered pathways were bioinformatically identified. Expression of selected genes was validated by quantitative PCR (qPCR). Immunohistochemical protein expression analyses of the proliferation marker Ki-67, the apoptosis marker cleaved caspase-3 and the neo-angiogenesis marker CD34 served to evaluate biological response.

Results: We identified 972 and 586 significantly up- and down-regulated genes, respectively, in celecoxib-treated specimens. Significant expression changes in six out of eight genes could be validated by qPCR. Pathway analyses revealed over-representation of deregulated genes in the networks of proliferation, cell cycle, extracellular matrix biology, and inflammatory immune response. The Ki-67 mean change relative to baseline was -29.1% (P = 0.019) and -8.2% (P = 0.384) in the treatment and control arm, respectively. Between treatment groups, the change in Ki-67 was statistically significant (P = 0.029). Cleaved caspase-3 and CD34 expression were not significantly different between the celecoxib-treated and placebo-treated groups.

Conclusions: Short-term COX-2 inhibition by celecoxib induces transcriptional programs supporting anti-tumour activity in primary breast cancer tissue. The impact on proliferation-associated genes is reflected by a reduction of Ki-67 positive cells. Therefore, COX-2 inhibition should be considered as a treatment strategy for further clinical testing in primary breast cancer.

Trial registration: ClinicalTrials.gov NCT01695226.

Show MeSH
Related in: MedlinePlus