Limits...
A randomised controlled phase II trial of pre-operative celecoxib treatment reveals anti-tumour transcriptional response in primary breast cancer.

Brandão RD, Veeck J, Van de Vijver KK, Lindsey P, de Vries B, van Elssen CH, Blok MJ, Keymeulen K, Ayoubi T, Smeets HJ, Tjan-Heijnen VC, Hupperets PS - Breast Cancer Res. (2013)

Bottom Line: We identified 972 and 586 significantly up- and down-regulated genes, respectively, in celecoxib-treated specimens.Between treatment groups, the change in Ki-67 was statistically significant (P = 0.029).The impact on proliferation-associated genes is reflected by a reduction of Ki-67 positive cells.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Introduction: Cyclooxygenase-2 (COX-2) is frequently over-expressed in primary breast cancer. In transgenic breast cancer models, over-expression of COX-2 leads to tumour formation while COX-2 inhibition exerts anti-tumour effects in breast cancer cell lines. To further determine the effect of COX-2 inhibition in primary breast cancer, we aimed to identify transcriptional changes in breast cancer tissues of patients treated with the selective COX-2 inhibitor celecoxib.

Methods: In a single-centre double-blind phase II study, thirty-seven breast cancer patients were randomised to receive either pre-operative celecoxib (400 mg) twice daily for two to three weeks (n = 22) or a placebo according to the same schedule (n = 15). Gene expression in fresh-frozen pre-surgical biopsies (before treatment) and surgical excision specimens (after treatment) was profiled by using Affymetrix arrays. Differentially expressed genes and altered pathways were bioinformatically identified. Expression of selected genes was validated by quantitative PCR (qPCR). Immunohistochemical protein expression analyses of the proliferation marker Ki-67, the apoptosis marker cleaved caspase-3 and the neo-angiogenesis marker CD34 served to evaluate biological response.

Results: We identified 972 and 586 significantly up- and down-regulated genes, respectively, in celecoxib-treated specimens. Significant expression changes in six out of eight genes could be validated by qPCR. Pathway analyses revealed over-representation of deregulated genes in the networks of proliferation, cell cycle, extracellular matrix biology, and inflammatory immune response. The Ki-67 mean change relative to baseline was -29.1% (P = 0.019) and -8.2% (P = 0.384) in the treatment and control arm, respectively. Between treatment groups, the change in Ki-67 was statistically significant (P = 0.029). Cleaved caspase-3 and CD34 expression were not significantly different between the celecoxib-treated and placebo-treated groups.

Conclusions: Short-term COX-2 inhibition by celecoxib induces transcriptional programs supporting anti-tumour activity in primary breast cancer tissue. The impact on proliferation-associated genes is reflected by a reduction of Ki-67 positive cells. Therefore, COX-2 inhibition should be considered as a treatment strategy for further clinical testing in primary breast cancer.

Trial registration: ClinicalTrials.gov NCT01695226.

Show MeSH

Related in: MedlinePlus

Flow diagram of the presented study. The design is a double-blind, randomised, controlled phase II trial of pre-operative celecoxib versus placebo in early breast cancer. Note that eight patients had discontinued intervention in the treatment arm. Gene expression profiling (GEP) has been performed from samples where indicated.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3672758&req=5

Figure 1: Flow diagram of the presented study. The design is a double-blind, randomised, controlled phase II trial of pre-operative celecoxib versus placebo in early breast cancer. Note that eight patients had discontinued intervention in the treatment arm. Gene expression profiling (GEP) has been performed from samples where indicated.

Mentions: The study was a double-blind, randomised, placebo-controlled phase II pre-surgical trial of celecoxib in early breast cancer. Exclusion criteria were: HIV, hepatitis B virus (HBV) or hepatitis C virus (HCV) positivity, known hypersensitivity to NSAIDs, patients already using NSAIDs or systemic use of corticosteroids. Informed consent was obtained prior to entering the trial and the Medical Ethics Committee of the Maastricht University Medical Centre+ (MUMC+) approved the study. We estimated that to test 18,500 genes at the 5% significance level and ensure 80% power, 23 samples were needed to detect differentially expressed genes by t-tests with a fold change of at least 1.5 (http://bioinformatics.mdanderson.org/MicroarraySampleSize/). Initially, 45 patients were recruited between 2005 and 2007 and randomly allocated 2:1 to the treatment (n = 30) or placebo group (n = 15). Celecoxib was pre-surgically administered for two to three weeks at 400 mg twice daily, whereas patients in the control arm received a placebo on the same schedule. Eight patients allocated to the treatment arm dropped out because these patients were operated earlier, thus drug compliance was insufficient (Figure 1). Tumour histology was assessed according to criteria defined by the World Health Organization (WHO) [20], while staging was performed according to the Union for International Cancer Control (UICC) criteria [21]. Tumours were graded following the system of Bloom and Richardson, as modified by Elston and Ellis [22]. Patient characteristics are described in Table 1. Importantly, in our study design patients acted as their own control, with a direct comparison of the final surgical specimen with the initial diagnostic biopsy. The inclusion of a placebo group served to observe a possible confounding impact of the disease and the experimental procedure, thereby allowing determination of a differential impact of celecoxib only.


A randomised controlled phase II trial of pre-operative celecoxib treatment reveals anti-tumour transcriptional response in primary breast cancer.

Brandão RD, Veeck J, Van de Vijver KK, Lindsey P, de Vries B, van Elssen CH, Blok MJ, Keymeulen K, Ayoubi T, Smeets HJ, Tjan-Heijnen VC, Hupperets PS - Breast Cancer Res. (2013)

Flow diagram of the presented study. The design is a double-blind, randomised, controlled phase II trial of pre-operative celecoxib versus placebo in early breast cancer. Note that eight patients had discontinued intervention in the treatment arm. Gene expression profiling (GEP) has been performed from samples where indicated.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3672758&req=5

Figure 1: Flow diagram of the presented study. The design is a double-blind, randomised, controlled phase II trial of pre-operative celecoxib versus placebo in early breast cancer. Note that eight patients had discontinued intervention in the treatment arm. Gene expression profiling (GEP) has been performed from samples where indicated.
Mentions: The study was a double-blind, randomised, placebo-controlled phase II pre-surgical trial of celecoxib in early breast cancer. Exclusion criteria were: HIV, hepatitis B virus (HBV) or hepatitis C virus (HCV) positivity, known hypersensitivity to NSAIDs, patients already using NSAIDs or systemic use of corticosteroids. Informed consent was obtained prior to entering the trial and the Medical Ethics Committee of the Maastricht University Medical Centre+ (MUMC+) approved the study. We estimated that to test 18,500 genes at the 5% significance level and ensure 80% power, 23 samples were needed to detect differentially expressed genes by t-tests with a fold change of at least 1.5 (http://bioinformatics.mdanderson.org/MicroarraySampleSize/). Initially, 45 patients were recruited between 2005 and 2007 and randomly allocated 2:1 to the treatment (n = 30) or placebo group (n = 15). Celecoxib was pre-surgically administered for two to three weeks at 400 mg twice daily, whereas patients in the control arm received a placebo on the same schedule. Eight patients allocated to the treatment arm dropped out because these patients were operated earlier, thus drug compliance was insufficient (Figure 1). Tumour histology was assessed according to criteria defined by the World Health Organization (WHO) [20], while staging was performed according to the Union for International Cancer Control (UICC) criteria [21]. Tumours were graded following the system of Bloom and Richardson, as modified by Elston and Ellis [22]. Patient characteristics are described in Table 1. Importantly, in our study design patients acted as their own control, with a direct comparison of the final surgical specimen with the initial diagnostic biopsy. The inclusion of a placebo group served to observe a possible confounding impact of the disease and the experimental procedure, thereby allowing determination of a differential impact of celecoxib only.

Bottom Line: We identified 972 and 586 significantly up- and down-regulated genes, respectively, in celecoxib-treated specimens.Between treatment groups, the change in Ki-67 was statistically significant (P = 0.029).The impact on proliferation-associated genes is reflected by a reduction of Ki-67 positive cells.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Introduction: Cyclooxygenase-2 (COX-2) is frequently over-expressed in primary breast cancer. In transgenic breast cancer models, over-expression of COX-2 leads to tumour formation while COX-2 inhibition exerts anti-tumour effects in breast cancer cell lines. To further determine the effect of COX-2 inhibition in primary breast cancer, we aimed to identify transcriptional changes in breast cancer tissues of patients treated with the selective COX-2 inhibitor celecoxib.

Methods: In a single-centre double-blind phase II study, thirty-seven breast cancer patients were randomised to receive either pre-operative celecoxib (400 mg) twice daily for two to three weeks (n = 22) or a placebo according to the same schedule (n = 15). Gene expression in fresh-frozen pre-surgical biopsies (before treatment) and surgical excision specimens (after treatment) was profiled by using Affymetrix arrays. Differentially expressed genes and altered pathways were bioinformatically identified. Expression of selected genes was validated by quantitative PCR (qPCR). Immunohistochemical protein expression analyses of the proliferation marker Ki-67, the apoptosis marker cleaved caspase-3 and the neo-angiogenesis marker CD34 served to evaluate biological response.

Results: We identified 972 and 586 significantly up- and down-regulated genes, respectively, in celecoxib-treated specimens. Significant expression changes in six out of eight genes could be validated by qPCR. Pathway analyses revealed over-representation of deregulated genes in the networks of proliferation, cell cycle, extracellular matrix biology, and inflammatory immune response. The Ki-67 mean change relative to baseline was -29.1% (P = 0.019) and -8.2% (P = 0.384) in the treatment and control arm, respectively. Between treatment groups, the change in Ki-67 was statistically significant (P = 0.029). Cleaved caspase-3 and CD34 expression were not significantly different between the celecoxib-treated and placebo-treated groups.

Conclusions: Short-term COX-2 inhibition by celecoxib induces transcriptional programs supporting anti-tumour activity in primary breast cancer tissue. The impact on proliferation-associated genes is reflected by a reduction of Ki-67 positive cells. Therefore, COX-2 inhibition should be considered as a treatment strategy for further clinical testing in primary breast cancer.

Trial registration: ClinicalTrials.gov NCT01695226.

Show MeSH
Related in: MedlinePlus