Limits...
Initial ventilator settings for critically ill patients.

Kilickaya O, Gajic O - Crit Care (2013)

Bottom Line: Observational data, small randomized studies and two recent systematic reviews suggest that lung protective ventilation is both safe and potentially beneficial in patients who do not have ARDS at the onset of mechanical ventilation.Principles of lung-protective ventilation include: a) prevention of volutrauma (tidal volume 4 to 8 ml/kg predicted body weight with plateau pressure<30 cmH2O); b) prevention of atelectasis (positive end-expiratory pressure≥5 cmH2O, as needed recruitment maneuvers); c) adequate ventilation (respiratory rate 20 to 35 breaths per minute); and d) prevention of hyperoxia (titrate inspired oxygen concentration to peripheral oxygen saturation (SpO2) levels of 88 to 95%).Patients with a stiff chest wall may tolerate higher plateau pressure targets (approximately 35 cmH2O) while those with severe ARDS and ventilator asynchrony may require a short-term neuromuscular blockade.

View Article: PubMed Central - HTML - PubMed

ABSTRACT
The lung-protective mechanical ventilation strategy has been standard practice for management of acute respiratory distress syndrome (ARDS) for more than a decade. Observational data, small randomized studies and two recent systematic reviews suggest that lung protective ventilation is both safe and potentially beneficial in patients who do not have ARDS at the onset of mechanical ventilation. Principles of lung-protective ventilation include: a) prevention of volutrauma (tidal volume 4 to 8 ml/kg predicted body weight with plateau pressure<30 cmH2O); b) prevention of atelectasis (positive end-expiratory pressure‚Č•5 cmH2O, as needed recruitment maneuvers); c) adequate ventilation (respiratory rate 20 to 35 breaths per minute); and d) prevention of hyperoxia (titrate inspired oxygen concentration to peripheral oxygen saturation (SpO2) levels of 88 to 95%). Most patients tolerate lung protective mechanical ventilation well without the need for excessive sedation. Patients with a stiff chest wall may tolerate higher plateau pressure targets (approximately 35 cmH2O) while those with severe ARDS and ventilator asynchrony may require a short-term neuromuscular blockade. Given the difficulty in timely identification of patients with or at risk of ARDS and both the safety and potential benefit in patients without ARDS, lung-protective mechanical ventilation is recommended as an initial approach to mechanical ventilation in both perioperative and critical care settings.

Show MeSH

Related in: MedlinePlus

How to set the ventilator in perioperative and critical care settings. ARDS, acute respiratory distress syndrome; EtCO2, end-tidal carbon dioxide; FiO2, fraction of inspired O2; PBW, predicted body weight; PEEP, positive end expiratory pressure; PO2, oxygen partial pressure; SpO2, peripheral oxygen saturation.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3672640&req=5

Figure 1: How to set the ventilator in perioperative and critical care settings. ARDS, acute respiratory distress syndrome; EtCO2, end-tidal carbon dioxide; FiO2, fraction of inspired O2; PBW, predicted body weight; PEEP, positive end expiratory pressure; PO2, oxygen partial pressure; SpO2, peripheral oxygen saturation.

Mentions: Although limited, the current evidence, including the current report by Fuller and colleagues [1], suggests that the risk/benefit ratio of low tidal volume ventilation in patients with or without ARDS is on the side of benefit. In Figure 1 we provide a pragmatic approach to lung protective mechanical ventilation in patients with and without ARDS.


Initial ventilator settings for critically ill patients.

Kilickaya O, Gajic O - Crit Care (2013)

How to set the ventilator in perioperative and critical care settings. ARDS, acute respiratory distress syndrome; EtCO2, end-tidal carbon dioxide; FiO2, fraction of inspired O2; PBW, predicted body weight; PEEP, positive end expiratory pressure; PO2, oxygen partial pressure; SpO2, peripheral oxygen saturation.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3672640&req=5

Figure 1: How to set the ventilator in perioperative and critical care settings. ARDS, acute respiratory distress syndrome; EtCO2, end-tidal carbon dioxide; FiO2, fraction of inspired O2; PBW, predicted body weight; PEEP, positive end expiratory pressure; PO2, oxygen partial pressure; SpO2, peripheral oxygen saturation.
Mentions: Although limited, the current evidence, including the current report by Fuller and colleagues [1], suggests that the risk/benefit ratio of low tidal volume ventilation in patients with or without ARDS is on the side of benefit. In Figure 1 we provide a pragmatic approach to lung protective mechanical ventilation in patients with and without ARDS.

Bottom Line: Observational data, small randomized studies and two recent systematic reviews suggest that lung protective ventilation is both safe and potentially beneficial in patients who do not have ARDS at the onset of mechanical ventilation.Principles of lung-protective ventilation include: a) prevention of volutrauma (tidal volume 4 to 8 ml/kg predicted body weight with plateau pressure<30 cmH2O); b) prevention of atelectasis (positive end-expiratory pressure≥5 cmH2O, as needed recruitment maneuvers); c) adequate ventilation (respiratory rate 20 to 35 breaths per minute); and d) prevention of hyperoxia (titrate inspired oxygen concentration to peripheral oxygen saturation (SpO2) levels of 88 to 95%).Patients with a stiff chest wall may tolerate higher plateau pressure targets (approximately 35 cmH2O) while those with severe ARDS and ventilator asynchrony may require a short-term neuromuscular blockade.

View Article: PubMed Central - HTML - PubMed

ABSTRACT
The lung-protective mechanical ventilation strategy has been standard practice for management of acute respiratory distress syndrome (ARDS) for more than a decade. Observational data, small randomized studies and two recent systematic reviews suggest that lung protective ventilation is both safe and potentially beneficial in patients who do not have ARDS at the onset of mechanical ventilation. Principles of lung-protective ventilation include: a) prevention of volutrauma (tidal volume 4 to 8 ml/kg predicted body weight with plateau pressure<30 cmH2O); b) prevention of atelectasis (positive end-expiratory pressure‚Č•5 cmH2O, as needed recruitment maneuvers); c) adequate ventilation (respiratory rate 20 to 35 breaths per minute); and d) prevention of hyperoxia (titrate inspired oxygen concentration to peripheral oxygen saturation (SpO2) levels of 88 to 95%). Most patients tolerate lung protective mechanical ventilation well without the need for excessive sedation. Patients with a stiff chest wall may tolerate higher plateau pressure targets (approximately 35 cmH2O) while those with severe ARDS and ventilator asynchrony may require a short-term neuromuscular blockade. Given the difficulty in timely identification of patients with or at risk of ARDS and both the safety and potential benefit in patients without ARDS, lung-protective mechanical ventilation is recommended as an initial approach to mechanical ventilation in both perioperative and critical care settings.

Show MeSH
Related in: MedlinePlus