Limits...
A useful EGFR-TK ligand for tumor diagnosis with SPECT: development of radioiodinated 6-(3-morpholinopropoxy)-7-ethoxy-4-(3'-iodophenoxy)quinazoline.

Hirata M, Kanai Y, Naka S, Yoshimoto M, Kagawa S, Matsumuro K, Katsuma H, Yamaguchi H, Magata Y, Ohmomo Y - Ann Nucl Med (2013)

Bottom Line: Six quinazoline derivatives were designed and synthesized, and among these, 6a-d were found to have relatively high EGFR-TK inhibitory potency.In contrast, [(125)I]PYK was rapidly cleared from peripheral tissues, resulting in a high tumor-to-tissue ratio 24 h after injection.Moreover, the EGFR-TK selectivity of [(125)I]PYK was confirmed by pretreatment experiments with specific EGFR-TK inhibitors.

View Article: PubMed Central - PubMed

Affiliation: Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Osaka, Takatsuki 569-1094, Japan.

ABSTRACT

Objective: Epidermal growth factor receptor tyrosine kinase (EGFR-TK) represents an attractive target for tumor diagnosis agents. Previously, radioiodinated 4-(3-iodophenoxy)-6,7-diethoxyquinazoline (PHY) was reported to possess good characteristics as a tumor imaging agent. We have explored the feasibility of developing tumor diagnosis ligands superior to radioiodinated PHY.

Methods: New phenoxyquinazoline derivatives were designed with various side chains introduced to the 6th position of PHY. The IC50 values of the new derivatives to interrupt EGFR-TK phosphorylation were evaluated and compared to well-known EGFR-TK inhibitors. Tumor uptake studies of the new (125)I-labeled derivatives were conducted with A431 tumor-bearing mice. Selectivity and binding characteristics were analyzed by in vitro blocking studies and a binding assay. Furthermore, SPECT/CT scans were performed using A431 tumor-bearing mice.

Results: Six quinazoline derivatives were designed and synthesized, and among these, 6a-d were found to have relatively high EGFR-TK inhibitory potency. In tumor uptake studies, [(125)I]6a ([(125)I]PYK) was found to have the highest tumor uptake and longest retention in tumors. In contrast, [(125)I]PYK was rapidly cleared from peripheral tissues, resulting in a high tumor-to-tissue ratio 24 h after injection. Moreover, the EGFR-TK selectivity of [(125)I]PYK was confirmed by pretreatment experiments with specific EGFR-TK inhibitors. Furthermore, [(125)I]PYK provided clear SPECT images of tumors.

Conclusions: Radioiodinated PYK, one of the newly synthesized quinazoline derivatives, was found to be a desirable ligand for EGFR-TK SPECT imaging. [(125)I]PYK showed high tumor accumulation and selective EGFR-TK binding and also succeeded in delivering high contrast imaging of tumors. These favorable characteristics of [(125)I]PYK suggest that the (123)I-labeled counterpart, [(123)I]PYK, would have great potential for diagnostic SPECT tumor imaging.

Show MeSH

Related in: MedlinePlus

Structures of m-IPQ and PHY
© Copyright Policy - OpenAccess
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3672506&req=5

Fig1: Structures of m-IPQ and PHY

Mentions: We have previously synthesized and evaluated several radioiodinated quinazoline derivatives as new EGFR-TK imaging ligands (m-IPQ: 4-(3-Iodoanilino)-6,7-diethoxyquinazoline (IC50 value; 50.5 ± 3.5 nM), PHY: 4-(3-Iodophenoxy)-6,7-diethoxyquinazoline (IC50 value; 49.0 ± 7.2 nM), Fig. 1) [21, 22]. In vivo stability of [125I]PHY improved compared to [125I]m-IPQ. However, [125I]PHY showed low values of tumor-to-blood ratio (0.94–1.50) and tumor-to-muscle ratio (1.02–1.95). Accordingly, the properties of [125I]PHY was not good enough for in vivo molecular imaging probe. Therefore, we have been investigated the new EGFR-TK imaging probes superior to PHY in tumor accumulation and retention by the ligand structure modification.Fig. 1


A useful EGFR-TK ligand for tumor diagnosis with SPECT: development of radioiodinated 6-(3-morpholinopropoxy)-7-ethoxy-4-(3'-iodophenoxy)quinazoline.

Hirata M, Kanai Y, Naka S, Yoshimoto M, Kagawa S, Matsumuro K, Katsuma H, Yamaguchi H, Magata Y, Ohmomo Y - Ann Nucl Med (2013)

Structures of m-IPQ and PHY
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3672506&req=5

Fig1: Structures of m-IPQ and PHY
Mentions: We have previously synthesized and evaluated several radioiodinated quinazoline derivatives as new EGFR-TK imaging ligands (m-IPQ: 4-(3-Iodoanilino)-6,7-diethoxyquinazoline (IC50 value; 50.5 ± 3.5 nM), PHY: 4-(3-Iodophenoxy)-6,7-diethoxyquinazoline (IC50 value; 49.0 ± 7.2 nM), Fig. 1) [21, 22]. In vivo stability of [125I]PHY improved compared to [125I]m-IPQ. However, [125I]PHY showed low values of tumor-to-blood ratio (0.94–1.50) and tumor-to-muscle ratio (1.02–1.95). Accordingly, the properties of [125I]PHY was not good enough for in vivo molecular imaging probe. Therefore, we have been investigated the new EGFR-TK imaging probes superior to PHY in tumor accumulation and retention by the ligand structure modification.Fig. 1

Bottom Line: Six quinazoline derivatives were designed and synthesized, and among these, 6a-d were found to have relatively high EGFR-TK inhibitory potency.In contrast, [(125)I]PYK was rapidly cleared from peripheral tissues, resulting in a high tumor-to-tissue ratio 24 h after injection.Moreover, the EGFR-TK selectivity of [(125)I]PYK was confirmed by pretreatment experiments with specific EGFR-TK inhibitors.

View Article: PubMed Central - PubMed

Affiliation: Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Osaka, Takatsuki 569-1094, Japan.

ABSTRACT

Objective: Epidermal growth factor receptor tyrosine kinase (EGFR-TK) represents an attractive target for tumor diagnosis agents. Previously, radioiodinated 4-(3-iodophenoxy)-6,7-diethoxyquinazoline (PHY) was reported to possess good characteristics as a tumor imaging agent. We have explored the feasibility of developing tumor diagnosis ligands superior to radioiodinated PHY.

Methods: New phenoxyquinazoline derivatives were designed with various side chains introduced to the 6th position of PHY. The IC50 values of the new derivatives to interrupt EGFR-TK phosphorylation were evaluated and compared to well-known EGFR-TK inhibitors. Tumor uptake studies of the new (125)I-labeled derivatives were conducted with A431 tumor-bearing mice. Selectivity and binding characteristics were analyzed by in vitro blocking studies and a binding assay. Furthermore, SPECT/CT scans were performed using A431 tumor-bearing mice.

Results: Six quinazoline derivatives were designed and synthesized, and among these, 6a-d were found to have relatively high EGFR-TK inhibitory potency. In tumor uptake studies, [(125)I]6a ([(125)I]PYK) was found to have the highest tumor uptake and longest retention in tumors. In contrast, [(125)I]PYK was rapidly cleared from peripheral tissues, resulting in a high tumor-to-tissue ratio 24 h after injection. Moreover, the EGFR-TK selectivity of [(125)I]PYK was confirmed by pretreatment experiments with specific EGFR-TK inhibitors. Furthermore, [(125)I]PYK provided clear SPECT images of tumors.

Conclusions: Radioiodinated PYK, one of the newly synthesized quinazoline derivatives, was found to be a desirable ligand for EGFR-TK SPECT imaging. [(125)I]PYK showed high tumor accumulation and selective EGFR-TK binding and also succeeded in delivering high contrast imaging of tumors. These favorable characteristics of [(125)I]PYK suggest that the (123)I-labeled counterpart, [(123)I]PYK, would have great potential for diagnostic SPECT tumor imaging.

Show MeSH
Related in: MedlinePlus