Limits...
Clinical outcomes of patients requiring ventilatory support in Brazilian intensive care units: a multicenter, prospective, cohort study.

Azevedo LC, Park M, Salluh JI, Rea-Neto A, Souza-Dantas VC, Varaschin P, Oliveira MC, Tierno PF, dal-Pizzol F, Silva UV, Knibel M, Nassar AP, Alves RA, Ferreira JC, Teixeira C, Rezende V, Martinez A, Luciano PM, Schettino G, Soares M, ERICC (Epidemiology of Respiratory Insufficiency in Critical Care) investigato - Crit Care (2013)

Bottom Line: Multivariate analysis was used to identifiy variables associated with hospital mortality and NIV failure.Current mortality of ventilated patients in Brazil is elevated.Implementation of judicious fluid therapy and a watchful use and monitoring of NIV patients are potential targets to improve outcomes in this setting.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Introduction: Contemporary information on mechanical ventilation (MV) use in emerging countries is limited. Moreover, most epidemiological studies on ventilatory support were carried out before significant developments, such as lung protective ventilation or broader application of non-invasive ventilation (NIV). We aimed to evaluate the clinical characteristics, outcomes and risk factors for hospital mortality and failure of NIV in patients requiring ventilatory support in Brazilian intensive care units (ICU).

Methods: In a multicenter, prospective, cohort study, a total of 773 adult patients admitted to 45 ICUs over a two-month period requiring invasive ventilation or NIV for more than 24 hours were evaluated. Causes of ventilatory support, prior chronic health status and physiological data were assessed. Multivariate analysis was used to identifiy variables associated with hospital mortality and NIV failure.

Results: Invasive MV and NIV were used as initial ventilatory support in 622 (80%) and 151 (20%) patients. Failure with subsequent intubation occurred in 54% of NIV patients. The main reasons for ventilatory support were pneumonia (27%), neurologic disorders (19%) and non-pulmonary sepsis (12%). ICU and hospital mortality rates were 34% and 42%. Using the Berlin definition, acute respiratory distress syndrome (ARDS) was diagnosed in 31% of the patients with a hospital mortality of 52%. In the multivariate analysis, age (odds ratio (OR), 1.03; 95% confidence interval (CI), 1.01 to 1.03), comorbidities (OR, 2.30; 95% CI, 1.28 to 3.17), associated organ failures (OR, 1.12; 95% CI, 1.05 to 1.20), moderate (OR, 1.92; 95% CI, 1.10 to 3.35) to severe ARDS (OR, 2.12; 95% CI, 1.01 to 4.41), cumulative fluid balance over the first 72 h of ICU (OR, 2.44; 95% CI, 1.39 to 4.28), higher lactate (OR, 1.78; 95% CI, 1.27 to 2.50), invasive MV (OR, 2.67; 95% CI, 1.32 to 5.39) and NIV failure (OR, 3.95; 95% CI, 1.74 to 8.99) were independently associated with hospital mortality. The predictors of NIV failure were the severity of associated organ dysfunctions (OR, 1.20; 95% CI, 1.05 to 1.34), ARDS (OR, 2.31; 95% CI, 1.10 to 4.82) and positive fluid balance (OR, 2.09; 95% CI, 1.02 to 4.30).

Conclusions: Current mortality of ventilated patients in Brazil is elevated. Implementation of judicious fluid therapy and a watchful use and monitoring of NIV patients are potential targets to improve outcomes in this setting.

Trial registration: ClinicalTrials.gov NCT01268410.

Show MeSH

Related in: MedlinePlus

ICU and hospital mortality rates according to the Berlin definition of ARDS. P < 0.001 (Pearson Chi-square test) for the comparison of hospital mortality and ARDS classification. ARDS, acute respiratory distress syndrome; ICU, intensive care unit.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3672504&req=5

Figure 3: ICU and hospital mortality rates according to the Berlin definition of ARDS. P < 0.001 (Pearson Chi-square test) for the comparison of hospital mortality and ARDS classification. ARDS, acute respiratory distress syndrome; ICU, intensive care unit.

Mentions: ARDS was diagnosed in 242 (31%) patients (Figure 2). Of these, 77% were supported with invasive MV and 23% received NIV as the initial ventilatory support. The rate of NIV failure in ARDS patients was 69%, as compared to 45% in non-ARDS patients (P = 0.007). ICU and hospital mortality in the ARDS population was 46% and 52%, respectively (Figure 2). In Figure 3, we depicted the ICU and hospital mortality rates for each category of ARDS. The combined ICU mortality for ARDS moderate and severe (the former definition of ARDS [20]) was 55% and the hospital mortality was 60%.


Clinical outcomes of patients requiring ventilatory support in Brazilian intensive care units: a multicenter, prospective, cohort study.

Azevedo LC, Park M, Salluh JI, Rea-Neto A, Souza-Dantas VC, Varaschin P, Oliveira MC, Tierno PF, dal-Pizzol F, Silva UV, Knibel M, Nassar AP, Alves RA, Ferreira JC, Teixeira C, Rezende V, Martinez A, Luciano PM, Schettino G, Soares M, ERICC (Epidemiology of Respiratory Insufficiency in Critical Care) investigato - Crit Care (2013)

ICU and hospital mortality rates according to the Berlin definition of ARDS. P < 0.001 (Pearson Chi-square test) for the comparison of hospital mortality and ARDS classification. ARDS, acute respiratory distress syndrome; ICU, intensive care unit.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3672504&req=5

Figure 3: ICU and hospital mortality rates according to the Berlin definition of ARDS. P < 0.001 (Pearson Chi-square test) for the comparison of hospital mortality and ARDS classification. ARDS, acute respiratory distress syndrome; ICU, intensive care unit.
Mentions: ARDS was diagnosed in 242 (31%) patients (Figure 2). Of these, 77% were supported with invasive MV and 23% received NIV as the initial ventilatory support. The rate of NIV failure in ARDS patients was 69%, as compared to 45% in non-ARDS patients (P = 0.007). ICU and hospital mortality in the ARDS population was 46% and 52%, respectively (Figure 2). In Figure 3, we depicted the ICU and hospital mortality rates for each category of ARDS. The combined ICU mortality for ARDS moderate and severe (the former definition of ARDS [20]) was 55% and the hospital mortality was 60%.

Bottom Line: Multivariate analysis was used to identifiy variables associated with hospital mortality and NIV failure.Current mortality of ventilated patients in Brazil is elevated.Implementation of judicious fluid therapy and a watchful use and monitoring of NIV patients are potential targets to improve outcomes in this setting.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Introduction: Contemporary information on mechanical ventilation (MV) use in emerging countries is limited. Moreover, most epidemiological studies on ventilatory support were carried out before significant developments, such as lung protective ventilation or broader application of non-invasive ventilation (NIV). We aimed to evaluate the clinical characteristics, outcomes and risk factors for hospital mortality and failure of NIV in patients requiring ventilatory support in Brazilian intensive care units (ICU).

Methods: In a multicenter, prospective, cohort study, a total of 773 adult patients admitted to 45 ICUs over a two-month period requiring invasive ventilation or NIV for more than 24 hours were evaluated. Causes of ventilatory support, prior chronic health status and physiological data were assessed. Multivariate analysis was used to identifiy variables associated with hospital mortality and NIV failure.

Results: Invasive MV and NIV were used as initial ventilatory support in 622 (80%) and 151 (20%) patients. Failure with subsequent intubation occurred in 54% of NIV patients. The main reasons for ventilatory support were pneumonia (27%), neurologic disorders (19%) and non-pulmonary sepsis (12%). ICU and hospital mortality rates were 34% and 42%. Using the Berlin definition, acute respiratory distress syndrome (ARDS) was diagnosed in 31% of the patients with a hospital mortality of 52%. In the multivariate analysis, age (odds ratio (OR), 1.03; 95% confidence interval (CI), 1.01 to 1.03), comorbidities (OR, 2.30; 95% CI, 1.28 to 3.17), associated organ failures (OR, 1.12; 95% CI, 1.05 to 1.20), moderate (OR, 1.92; 95% CI, 1.10 to 3.35) to severe ARDS (OR, 2.12; 95% CI, 1.01 to 4.41), cumulative fluid balance over the first 72 h of ICU (OR, 2.44; 95% CI, 1.39 to 4.28), higher lactate (OR, 1.78; 95% CI, 1.27 to 2.50), invasive MV (OR, 2.67; 95% CI, 1.32 to 5.39) and NIV failure (OR, 3.95; 95% CI, 1.74 to 8.99) were independently associated with hospital mortality. The predictors of NIV failure were the severity of associated organ dysfunctions (OR, 1.20; 95% CI, 1.05 to 1.34), ARDS (OR, 2.31; 95% CI, 1.10 to 4.82) and positive fluid balance (OR, 2.09; 95% CI, 1.02 to 4.30).

Conclusions: Current mortality of ventilated patients in Brazil is elevated. Implementation of judicious fluid therapy and a watchful use and monitoring of NIV patients are potential targets to improve outcomes in this setting.

Trial registration: ClinicalTrials.gov NCT01268410.

Show MeSH
Related in: MedlinePlus