Limits...
Algorithm for the resuscitation of traumatic cardiac arrest patients in a physician-staffed helicopter emergency medical service.

Sherren PB, Reid C, Habig K, Burns BJ - Crit Care (2013)

Bottom Line: There are a number of potentially reversible causes to TCA and a well-defined group of survivors.There are distinct differences in the pathophysiology between medical cardiac arrests and TCA.The authors present some of the key differences and evidence related to resuscitation in TCA, and suggest a separate algorithm for the management of out-of-hospital TCA attended by a highly trained physician and paramedic team.

View Article: PubMed Central - HTML - PubMed

ABSTRACT
Survival rates following traumatic cardiac arrest (TCA) are known to be poor but resuscitation is not universally futile. There are a number of potentially reversible causes to TCA and a well-defined group of survivors. There are distinct differences in the pathophysiology between medical cardiac arrests and TCA. The authors present some of the key differences and evidence related to resuscitation in TCA, and suggest a separate algorithm for the management of out-of-hospital TCA attended by a highly trained physician and paramedic team.

Show MeSH

Related in: MedlinePlus

Traumatic cardiac arrest and thoracotomy algorithm. *If signs of exsanguination or chest injuries, external chest compressions unlikely to be effective, and possibly detrimental. **In blunt trauma involving complex pathology, pericardiocentesis maybe a reasonable intermediate step. If ROSC not achieved, proceed to immediate thoracotomy. ALS, advanced cardiac life support; BVM, bag valve mask; ECG, electrocardiogram; ETCO2, end-tidal carbon dioxide partial pressure; ETI, endotracheal intubation; ILCOR, International Liaison Committee on Resuscitation; IPPV, intermittent positive pressure ventilation; MTC, major trauma centre; MTP, massive transfusion policy; ROSC, return of spontaneous circulation; SGA, supra-glottic airway; VF, ventricular fibrillation; VT, ventricular tachycardia.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3672499&req=5

Figure 1: Traumatic cardiac arrest and thoracotomy algorithm. *If signs of exsanguination or chest injuries, external chest compressions unlikely to be effective, and possibly detrimental. **In blunt trauma involving complex pathology, pericardiocentesis maybe a reasonable intermediate step. If ROSC not achieved, proceed to immediate thoracotomy. ALS, advanced cardiac life support; BVM, bag valve mask; ECG, electrocardiogram; ETCO2, end-tidal carbon dioxide partial pressure; ETI, endotracheal intubation; ILCOR, International Liaison Committee on Resuscitation; IPPV, intermittent positive pressure ventilation; MTC, major trauma centre; MTP, massive transfusion policy; ROSC, return of spontaneous circulation; SGA, supra-glottic airway; VF, ventricular fibrillation; VT, ventricular tachycardia.

Mentions: Survival rates following traumatic cardiac arrest (TCA) are known to be poor from both civilian and military data [1,2]. However, the common misconception that resuscitation is futile for all patients is not well founded. Lockey and colleagues demonstrated that a well-trained physician and paramedic team attending out-of-hospital TCAs could achieve a 7.5% survival rate to hospital discharge, comparable with out-of-hospital cardiac arrest from any cause [1]. Survival rates are highly variable depending on the aetiology, and traumatic pathologies associated with an improved chance of successful resuscitation include hypoxia, tension pneumothorax and cardiac tamponade [1-3]. TCA is a unique disease in which clinicians are frequently confronted by a healthy heart that has arrested as a result of hypoxia, haemorrhage or obstructive shock [1-3]. Consequently, there are different management priorities in TCA and potential deviations from existing non-TCA algorithms. The authors developed an algorithm (Figure 1) to address these issues based on their own current practice and available published evidence.


Algorithm for the resuscitation of traumatic cardiac arrest patients in a physician-staffed helicopter emergency medical service.

Sherren PB, Reid C, Habig K, Burns BJ - Crit Care (2013)

Traumatic cardiac arrest and thoracotomy algorithm. *If signs of exsanguination or chest injuries, external chest compressions unlikely to be effective, and possibly detrimental. **In blunt trauma involving complex pathology, pericardiocentesis maybe a reasonable intermediate step. If ROSC not achieved, proceed to immediate thoracotomy. ALS, advanced cardiac life support; BVM, bag valve mask; ECG, electrocardiogram; ETCO2, end-tidal carbon dioxide partial pressure; ETI, endotracheal intubation; ILCOR, International Liaison Committee on Resuscitation; IPPV, intermittent positive pressure ventilation; MTC, major trauma centre; MTP, massive transfusion policy; ROSC, return of spontaneous circulation; SGA, supra-glottic airway; VF, ventricular fibrillation; VT, ventricular tachycardia.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3672499&req=5

Figure 1: Traumatic cardiac arrest and thoracotomy algorithm. *If signs of exsanguination or chest injuries, external chest compressions unlikely to be effective, and possibly detrimental. **In blunt trauma involving complex pathology, pericardiocentesis maybe a reasonable intermediate step. If ROSC not achieved, proceed to immediate thoracotomy. ALS, advanced cardiac life support; BVM, bag valve mask; ECG, electrocardiogram; ETCO2, end-tidal carbon dioxide partial pressure; ETI, endotracheal intubation; ILCOR, International Liaison Committee on Resuscitation; IPPV, intermittent positive pressure ventilation; MTC, major trauma centre; MTP, massive transfusion policy; ROSC, return of spontaneous circulation; SGA, supra-glottic airway; VF, ventricular fibrillation; VT, ventricular tachycardia.
Mentions: Survival rates following traumatic cardiac arrest (TCA) are known to be poor from both civilian and military data [1,2]. However, the common misconception that resuscitation is futile for all patients is not well founded. Lockey and colleagues demonstrated that a well-trained physician and paramedic team attending out-of-hospital TCAs could achieve a 7.5% survival rate to hospital discharge, comparable with out-of-hospital cardiac arrest from any cause [1]. Survival rates are highly variable depending on the aetiology, and traumatic pathologies associated with an improved chance of successful resuscitation include hypoxia, tension pneumothorax and cardiac tamponade [1-3]. TCA is a unique disease in which clinicians are frequently confronted by a healthy heart that has arrested as a result of hypoxia, haemorrhage or obstructive shock [1-3]. Consequently, there are different management priorities in TCA and potential deviations from existing non-TCA algorithms. The authors developed an algorithm (Figure 1) to address these issues based on their own current practice and available published evidence.

Bottom Line: There are a number of potentially reversible causes to TCA and a well-defined group of survivors.There are distinct differences in the pathophysiology between medical cardiac arrests and TCA.The authors present some of the key differences and evidence related to resuscitation in TCA, and suggest a separate algorithm for the management of out-of-hospital TCA attended by a highly trained physician and paramedic team.

View Article: PubMed Central - HTML - PubMed

ABSTRACT
Survival rates following traumatic cardiac arrest (TCA) are known to be poor but resuscitation is not universally futile. There are a number of potentially reversible causes to TCA and a well-defined group of survivors. There are distinct differences in the pathophysiology between medical cardiac arrests and TCA. The authors present some of the key differences and evidence related to resuscitation in TCA, and suggest a separate algorithm for the management of out-of-hospital TCA attended by a highly trained physician and paramedic team.

Show MeSH
Related in: MedlinePlus