Limits...
Clinical review: Acute respiratory distress syndrome - clinical ventilator management and adjunct therapy.

Silversides JA, Ferguson ND - Crit Care (2013)

Bottom Line: Acute respiratory distress syndrome (ARDS) is a potentially devastating form of acute inflammatory lung injury with a high short-term mortality rate and significant long-term consequences among survivors.Key components of such a strategy include avoiding lung overdistension by limiting tidal volumes and airway pressures, and the use of positive end-expiratory pressure with or without lung recruitment manoeuvres in patients with severe ARDS.Adjunctive therapies discussed include pharmacologic techniques (for example, vasodilators, diuretics, neuromuscular blockade) and nonpharmacologic techniques (for example, prone position, alternative modes of ventilation).

View Article: PubMed Central - HTML - PubMed

ABSTRACT
Acute respiratory distress syndrome (ARDS) is a potentially devastating form of acute inflammatory lung injury with a high short-term mortality rate and significant long-term consequences among survivors. Supportive care, principally with mechanical ventilation, remains the cornerstone of therapy - although the goals of this support have changed in recent years - from maintaining normal physiological parameters to avoiding ventilator-induced lung injury while providing adequate gas exchange. In this article we discuss the current evidence base for ventilatory support and adjunctive therapies in patients with ARDS. Key components of such a strategy include avoiding lung overdistension by limiting tidal volumes and airway pressures, and the use of positive end-expiratory pressure with or without lung recruitment manoeuvres in patients with severe ARDS. Adjunctive therapies discussed include pharmacologic techniques (for example, vasodilators, diuretics, neuromuscular blockade) and nonpharmacologic techniques (for example, prone position, alternative modes of ventilation).

Show MeSH

Related in: MedlinePlus

Pooled adjusted survival in higher versus lower positive end-expiratory pressure trials. ARDS, acute respiratory distress syndrome; CI, confidence interval; HR, hazard ratio; PEEP, positive end-expiratory pressure. Adapted with permission from [44].
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3672489&req=5

Figure 1: Pooled adjusted survival in higher versus lower positive end-expiratory pressure trials. ARDS, acute respiratory distress syndrome; CI, confidence interval; HR, hazard ratio; PEEP, positive end-expiratory pressure. Adapted with permission from [44].

Mentions: The sustainability of improvements in oxygenation with recruitment manoeuvres may depend on the use of PEEP as a means of maintaining recruitment. In selecting a PEEP level, one must consider both the target level (low, moderate, high) and the method for determining the actual numeric value of PEEP. In terms of target level, there is at least observational evidence to suggest that very low levels of PEEP (<5 cmH2O) are associated with worse mortality [40]. The debate regarding targets of moderate versus higher levels of PEEP is informed by three recent large RCTs that maintained low tidal volumes in all patients [41-43]. While none of these trials individually showed a significant mortality benefit, when combined in an individual-patient meta-analysis the patients with moderate-severe ARDS (PaO2/FiO2 ≤ 200) had lower mortality and more ventilator-free days with higher levels of PEEP (approximately 15 cmH2O on day 1) [44]. In contrast, patients with mild ARDS (PaO2/FiO2 = 201 to 300) showed a nonsignificant trend towards worse outcomes with higher PEEP; no benefit was seen in the overall population (see Figure 1) [44].


Clinical review: Acute respiratory distress syndrome - clinical ventilator management and adjunct therapy.

Silversides JA, Ferguson ND - Crit Care (2013)

Pooled adjusted survival in higher versus lower positive end-expiratory pressure trials. ARDS, acute respiratory distress syndrome; CI, confidence interval; HR, hazard ratio; PEEP, positive end-expiratory pressure. Adapted with permission from [44].
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3672489&req=5

Figure 1: Pooled adjusted survival in higher versus lower positive end-expiratory pressure trials. ARDS, acute respiratory distress syndrome; CI, confidence interval; HR, hazard ratio; PEEP, positive end-expiratory pressure. Adapted with permission from [44].
Mentions: The sustainability of improvements in oxygenation with recruitment manoeuvres may depend on the use of PEEP as a means of maintaining recruitment. In selecting a PEEP level, one must consider both the target level (low, moderate, high) and the method for determining the actual numeric value of PEEP. In terms of target level, there is at least observational evidence to suggest that very low levels of PEEP (<5 cmH2O) are associated with worse mortality [40]. The debate regarding targets of moderate versus higher levels of PEEP is informed by three recent large RCTs that maintained low tidal volumes in all patients [41-43]. While none of these trials individually showed a significant mortality benefit, when combined in an individual-patient meta-analysis the patients with moderate-severe ARDS (PaO2/FiO2 ≤ 200) had lower mortality and more ventilator-free days with higher levels of PEEP (approximately 15 cmH2O on day 1) [44]. In contrast, patients with mild ARDS (PaO2/FiO2 = 201 to 300) showed a nonsignificant trend towards worse outcomes with higher PEEP; no benefit was seen in the overall population (see Figure 1) [44].

Bottom Line: Acute respiratory distress syndrome (ARDS) is a potentially devastating form of acute inflammatory lung injury with a high short-term mortality rate and significant long-term consequences among survivors.Key components of such a strategy include avoiding lung overdistension by limiting tidal volumes and airway pressures, and the use of positive end-expiratory pressure with or without lung recruitment manoeuvres in patients with severe ARDS.Adjunctive therapies discussed include pharmacologic techniques (for example, vasodilators, diuretics, neuromuscular blockade) and nonpharmacologic techniques (for example, prone position, alternative modes of ventilation).

View Article: PubMed Central - HTML - PubMed

ABSTRACT
Acute respiratory distress syndrome (ARDS) is a potentially devastating form of acute inflammatory lung injury with a high short-term mortality rate and significant long-term consequences among survivors. Supportive care, principally with mechanical ventilation, remains the cornerstone of therapy - although the goals of this support have changed in recent years - from maintaining normal physiological parameters to avoiding ventilator-induced lung injury while providing adequate gas exchange. In this article we discuss the current evidence base for ventilatory support and adjunctive therapies in patients with ARDS. Key components of such a strategy include avoiding lung overdistension by limiting tidal volumes and airway pressures, and the use of positive end-expiratory pressure with or without lung recruitment manoeuvres in patients with severe ARDS. Adjunctive therapies discussed include pharmacologic techniques (for example, vasodilators, diuretics, neuromuscular blockade) and nonpharmacologic techniques (for example, prone position, alternative modes of ventilation).

Show MeSH
Related in: MedlinePlus