Limits...
Predictive value of circulating interleukin-6 and heart-type fatty acid binding protein for three months clinical outcome in acute cerebral infarction: multiple blood markers profiling study.

Park SY, Kim J, Kim OJ, Kim JK, Song J, Shin DA, Oh SH - Crit Care (2013)

Bottom Line: In multivariate analysis, natural log-transformed (log) IL-6 (odds ratio (OR): 1.75, 95% CI: 1.25 to 2.25, P=0.001) and loghFABP (OR: 3.23, 95% CI: 1.44 to 7.27, P=0.005) were independently associated with poor outcome.However, the addition of the combination of logIL-6 and loghFABP to the clinical model showed improved discrimination (area under receiver operating characteristic (AUROC) curve: 0.939 versus 0.910, P=0.03) and reclassification performance (net reclassification improvement index: 0.18, P=0.005).A combination of circulating IL-6 and hFABP level has an additive clinical value for the prediction of stroke outcome.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Introduction: There is no single blood marker for predicting the prognosis in ischemic stroke. A combination of multiple blood markers may enhance the ability to predict long-term outcome following ischemic stroke.

Methods: Blood concentrations of neuronal markers (neuron-specific enolase, visinin-like protein 1, heart type fatty acid binding protein (hFABP) and neuroglobin), astroglial markers (S100B and glial fibrillary acidic protein), inflammatory markers (IL-6, TNF-α, and C-reactive protein), blood-brain barrier marker (matrix metalloproteinase 9), and haemostatic markers (D-dimer and PAI-1) were measured within 24 hours after stroke onset. The discrimination and reclassification for favorable and poor outcome were compared after adding individual or a combination of blood markers to the clinical model of stroke outcome.

Results: In multivariate analysis, natural log-transformed (log) IL-6 (odds ratio (OR): 1.75, 95% CI: 1.25 to 2.25, P=0.001) and loghFABP (OR: 3.23, 95% CI: 1.44 to 7.27, P=0.005) were independently associated with poor outcome. The addition of a single blood marker to the clinical model did not improve the discriminating ability of the clinical model of stroke outcome. However, the addition of the combination of logIL-6 and loghFABP to the clinical model showed improved discrimination (area under receiver operating characteristic (AUROC) curve: 0.939 versus 0.910, P=0.03) and reclassification performance (net reclassification improvement index: 0.18, P=0.005).

Conclusions: A combination of circulating IL-6 and hFABP level has an additive clinical value for the prediction of stroke outcome.

Show MeSH

Related in: MedlinePlus

Receiver operating characteristic (ROC) curve of the addition of the combination of logIL-6 and loghFABP to the clinical baseline model.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3672476&req=5

Figure 1: Receiver operating characteristic (ROC) curve of the addition of the combination of logIL-6 and loghFABP to the clinical baseline model.

Mentions: In ROC curve analysis, the baseline clinical model showed good discriminating ability (AUC: 0.910) for stroke outcome. The addition of any single marker did not significantly improve the AUC value of the baseline clinical model. Adding a combination of logIL-6 and loghFABP to the baseline clinical model (AUC: 0.939, P < 0.03) significantly improved the discriminating ability of the baseline clinical model (Table 4 and Figure 1). The addition of other individual markers to the combined model of logIL-6, loghFABP and clinical model did not result in further improvement of AUC in ROC curve analysis (P ≥ 0.05 by the DeLong method). We further calculated the in-sample NRI index and IDI of logIL-6 and loghFABP in each model (Table 4). Adding logIL-6 to the baseline clinical model significantly improved the NRI index (0.09, P = 0.04) but adding loghFABP to the baseline clinical model did not improve the NRI index. The addition of both logIL-6 and loghFABP further enhanced the NRI index of logIL-6 (0.18, P = 0.005). The in-sample reclassification table in the model with logIL-6 and loghFABP is presented in Additional file 2. In 64 patients with a poor outcome, seven were reclassified into higher risk categories, and only two were reclassified into lower risk categories. In 111 patients with a favorable outcome, only six were reclassified into higher risk categories, and 17 were reclassified into lower risk categories.


Predictive value of circulating interleukin-6 and heart-type fatty acid binding protein for three months clinical outcome in acute cerebral infarction: multiple blood markers profiling study.

Park SY, Kim J, Kim OJ, Kim JK, Song J, Shin DA, Oh SH - Crit Care (2013)

Receiver operating characteristic (ROC) curve of the addition of the combination of logIL-6 and loghFABP to the clinical baseline model.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3672476&req=5

Figure 1: Receiver operating characteristic (ROC) curve of the addition of the combination of logIL-6 and loghFABP to the clinical baseline model.
Mentions: In ROC curve analysis, the baseline clinical model showed good discriminating ability (AUC: 0.910) for stroke outcome. The addition of any single marker did not significantly improve the AUC value of the baseline clinical model. Adding a combination of logIL-6 and loghFABP to the baseline clinical model (AUC: 0.939, P < 0.03) significantly improved the discriminating ability of the baseline clinical model (Table 4 and Figure 1). The addition of other individual markers to the combined model of logIL-6, loghFABP and clinical model did not result in further improvement of AUC in ROC curve analysis (P ≥ 0.05 by the DeLong method). We further calculated the in-sample NRI index and IDI of logIL-6 and loghFABP in each model (Table 4). Adding logIL-6 to the baseline clinical model significantly improved the NRI index (0.09, P = 0.04) but adding loghFABP to the baseline clinical model did not improve the NRI index. The addition of both logIL-6 and loghFABP further enhanced the NRI index of logIL-6 (0.18, P = 0.005). The in-sample reclassification table in the model with logIL-6 and loghFABP is presented in Additional file 2. In 64 patients with a poor outcome, seven were reclassified into higher risk categories, and only two were reclassified into lower risk categories. In 111 patients with a favorable outcome, only six were reclassified into higher risk categories, and 17 were reclassified into lower risk categories.

Bottom Line: In multivariate analysis, natural log-transformed (log) IL-6 (odds ratio (OR): 1.75, 95% CI: 1.25 to 2.25, P=0.001) and loghFABP (OR: 3.23, 95% CI: 1.44 to 7.27, P=0.005) were independently associated with poor outcome.However, the addition of the combination of logIL-6 and loghFABP to the clinical model showed improved discrimination (area under receiver operating characteristic (AUROC) curve: 0.939 versus 0.910, P=0.03) and reclassification performance (net reclassification improvement index: 0.18, P=0.005).A combination of circulating IL-6 and hFABP level has an additive clinical value for the prediction of stroke outcome.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Introduction: There is no single blood marker for predicting the prognosis in ischemic stroke. A combination of multiple blood markers may enhance the ability to predict long-term outcome following ischemic stroke.

Methods: Blood concentrations of neuronal markers (neuron-specific enolase, visinin-like protein 1, heart type fatty acid binding protein (hFABP) and neuroglobin), astroglial markers (S100B and glial fibrillary acidic protein), inflammatory markers (IL-6, TNF-α, and C-reactive protein), blood-brain barrier marker (matrix metalloproteinase 9), and haemostatic markers (D-dimer and PAI-1) were measured within 24 hours after stroke onset. The discrimination and reclassification for favorable and poor outcome were compared after adding individual or a combination of blood markers to the clinical model of stroke outcome.

Results: In multivariate analysis, natural log-transformed (log) IL-6 (odds ratio (OR): 1.75, 95% CI: 1.25 to 2.25, P=0.001) and loghFABP (OR: 3.23, 95% CI: 1.44 to 7.27, P=0.005) were independently associated with poor outcome. The addition of a single blood marker to the clinical model did not improve the discriminating ability of the clinical model of stroke outcome. However, the addition of the combination of logIL-6 and loghFABP to the clinical model showed improved discrimination (area under receiver operating characteristic (AUROC) curve: 0.939 versus 0.910, P=0.03) and reclassification performance (net reclassification improvement index: 0.18, P=0.005).

Conclusions: A combination of circulating IL-6 and hFABP level has an additive clinical value for the prediction of stroke outcome.

Show MeSH
Related in: MedlinePlus