Limits...
The morphology and adhesion mechanism of Octopus vulgaris suckers.

Tramacere F, Beccai L, Kuba M, Gozzi A, Bifone A, Mazzolai B - PLoS ONE (2013)

Bottom Line: We use three different techniques (MRI, ultrasonography, and histology) and a 3D reconstruction approach to contribute knowledge on both morphology and functionality of the sucker structure in O. vulgaris.The results of our investigation are two-fold.In particular, in O. vulgaris the acetabular chamber, that is a hollow spherical cavity in other octopuses, shows an ellipsoidal cavity which roof has an important protuberance with surface roughness.

View Article: PubMed Central - PubMed

Affiliation: Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pontedera, Italy. francesca.tramacere@iit.it

ABSTRACT
The octopus sucker represents a fascinating natural system performing adhesion on different terrains and substrates. Octopuses use suckers to anchor the body to the substrate or to grasp, investigate and manipulate objects, just to mention a few of their functions. Our study focuses on the morphology and adhesion mechanism of suckers in Octopus vulgaris. We use three different techniques (MRI, ultrasonography, and histology) and a 3D reconstruction approach to contribute knowledge on both morphology and functionality of the sucker structure in O. vulgaris. The results of our investigation are two-fold. First, we observe some morphological differences with respect to the octopus species previously studied (i.e., Octopus joubini, Octopus maya, Octopus bimaculoides/bimaculatus and Eledone cirrosa). In particular, in O. vulgaris the acetabular chamber, that is a hollow spherical cavity in other octopuses, shows an ellipsoidal cavity which roof has an important protuberance with surface roughness. Second, based on our findings, we propose a hypothesis on the sucker adhesion mechanism in O. vulgaris. We hypothesize that the process of continuous adhesion is achieved by sealing the orifice between acetabulum and infundibulum portions via the acetabular protuberance. We suggest this to take place while the infundibular part achieves a completely flat shape; and, by sustaining adhesion through preservation of sucker configuration. In vivo ultrasonographic recordings support our proposed adhesion model by showing the sucker in action. Such an underlying physical mechanism offers innovative potential cues for developing bioinspired artificial adhesion systems. Furthermore, we think that it could possibly represent a useful approach in order to investigate any potential difference in the ecology and in the performance of adhesion by different species.

Show MeSH

Related in: MedlinePlus

Morphological differences among O. vulgaris and the other octopus species.A) Transversal histological section (10 µm thick) of O. vulgaris sucker stained with Picro-Ponceau. B-D) Transversal histological section (10 µm thick) of O. vulgaris sucker stained with Milligan trichrome, showing the observed morphological differences among O. vulgaris and the other octopus species. B) Rough surface (RS) of acetabular protuberance. The scale bar equals 200 µm; C) Arrangement of meridional muscles (MM) in infundibular portion. The scale bar equals 600 µm; D) Primary sphincter (SP) and secondary sphincters (SS). The scale bar equals 600 µm.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3672162&req=5

pone-0065074-g005: Morphological differences among O. vulgaris and the other octopus species.A) Transversal histological section (10 µm thick) of O. vulgaris sucker stained with Picro-Ponceau. B-D) Transversal histological section (10 µm thick) of O. vulgaris sucker stained with Milligan trichrome, showing the observed morphological differences among O. vulgaris and the other octopus species. B) Rough surface (RS) of acetabular protuberance. The scale bar equals 200 µm; C) Arrangement of meridional muscles (MM) in infundibular portion. The scale bar equals 600 µm; D) Primary sphincter (SP) and secondary sphincters (SS). The scale bar equals 600 µm.

Mentions: Analyzing histological sections, we also noticed that the acetabular protuberance shows a thin layer of ridges (Figure 5A) - recalling the roughness that covers the internal surface of infundibulum and orifice - whereas the remaining part of the acetabulum is completely smooth.


The morphology and adhesion mechanism of Octopus vulgaris suckers.

Tramacere F, Beccai L, Kuba M, Gozzi A, Bifone A, Mazzolai B - PLoS ONE (2013)

Morphological differences among O. vulgaris and the other octopus species.A) Transversal histological section (10 µm thick) of O. vulgaris sucker stained with Picro-Ponceau. B-D) Transversal histological section (10 µm thick) of O. vulgaris sucker stained with Milligan trichrome, showing the observed morphological differences among O. vulgaris and the other octopus species. B) Rough surface (RS) of acetabular protuberance. The scale bar equals 200 µm; C) Arrangement of meridional muscles (MM) in infundibular portion. The scale bar equals 600 µm; D) Primary sphincter (SP) and secondary sphincters (SS). The scale bar equals 600 µm.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3672162&req=5

pone-0065074-g005: Morphological differences among O. vulgaris and the other octopus species.A) Transversal histological section (10 µm thick) of O. vulgaris sucker stained with Picro-Ponceau. B-D) Transversal histological section (10 µm thick) of O. vulgaris sucker stained with Milligan trichrome, showing the observed morphological differences among O. vulgaris and the other octopus species. B) Rough surface (RS) of acetabular protuberance. The scale bar equals 200 µm; C) Arrangement of meridional muscles (MM) in infundibular portion. The scale bar equals 600 µm; D) Primary sphincter (SP) and secondary sphincters (SS). The scale bar equals 600 µm.
Mentions: Analyzing histological sections, we also noticed that the acetabular protuberance shows a thin layer of ridges (Figure 5A) - recalling the roughness that covers the internal surface of infundibulum and orifice - whereas the remaining part of the acetabulum is completely smooth.

Bottom Line: We use three different techniques (MRI, ultrasonography, and histology) and a 3D reconstruction approach to contribute knowledge on both morphology and functionality of the sucker structure in O. vulgaris.The results of our investigation are two-fold.In particular, in O. vulgaris the acetabular chamber, that is a hollow spherical cavity in other octopuses, shows an ellipsoidal cavity which roof has an important protuberance with surface roughness.

View Article: PubMed Central - PubMed

Affiliation: Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pontedera, Italy. francesca.tramacere@iit.it

ABSTRACT
The octopus sucker represents a fascinating natural system performing adhesion on different terrains and substrates. Octopuses use suckers to anchor the body to the substrate or to grasp, investigate and manipulate objects, just to mention a few of their functions. Our study focuses on the morphology and adhesion mechanism of suckers in Octopus vulgaris. We use three different techniques (MRI, ultrasonography, and histology) and a 3D reconstruction approach to contribute knowledge on both morphology and functionality of the sucker structure in O. vulgaris. The results of our investigation are two-fold. First, we observe some morphological differences with respect to the octopus species previously studied (i.e., Octopus joubini, Octopus maya, Octopus bimaculoides/bimaculatus and Eledone cirrosa). In particular, in O. vulgaris the acetabular chamber, that is a hollow spherical cavity in other octopuses, shows an ellipsoidal cavity which roof has an important protuberance with surface roughness. Second, based on our findings, we propose a hypothesis on the sucker adhesion mechanism in O. vulgaris. We hypothesize that the process of continuous adhesion is achieved by sealing the orifice between acetabulum and infundibulum portions via the acetabular protuberance. We suggest this to take place while the infundibular part achieves a completely flat shape; and, by sustaining adhesion through preservation of sucker configuration. In vivo ultrasonographic recordings support our proposed adhesion model by showing the sucker in action. Such an underlying physical mechanism offers innovative potential cues for developing bioinspired artificial adhesion systems. Furthermore, we think that it could possibly represent a useful approach in order to investigate any potential difference in the ecology and in the performance of adhesion by different species.

Show MeSH
Related in: MedlinePlus