Limits...
Individual daytime noise exposure during routine activities and heart rate variability in adults: a repeated measures study.

Kraus U, Schneider A, Breitner S, Hampel R, Rückerl R, Pitz M, Geruschkat U, Belcredi P, Radon K, Peters A - Environ. Health Perspect. (2013)

Bottom Line: Concurrent increases of 5 dB(A) in L(eq) < 65 dB(A) were associated with increases in HR (percent change of mean value: 1.48%; 95% CI: 1.37, 1.60%) and the ratio of low-frequency (LF) to high-frequency (HF) power (4.89%; 95% CI: 3.48, 6.32%), and with decreases in LF (-3.77%; 95% CI: -5.49, -2.02%) and HF (-8.56%; 95% CI: -10.31, -6.78%) power.Standard deviation of normal-to-normal intervals (SDNN) was positively associated with concurrent noise < 65 dB(A) (5.74%; 95% CI: 5.13, 6.36) but negatively associated with noise lagged by 5-15 min (-0.53% to -0.69%).Noise at lower levels may have health consequences beyond those resulting from "fight-or-flight" responses to high levels of noise.

View Article: PubMed Central - PubMed

Affiliation: Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany. ute.kraus@helmholtz-muenchen.de

ABSTRACT

Background: Epidemiological studies have demonstrated associations between noise exposure and cardiovascular events. However, there have been few studies of possible underlying mechanisms.

Objectives: We examined the association between individual daytime noise exposure and heart rate variability (HRV).

Methods: In a prospective panel study in Augsburg, Germany (March 2007-December 2008), 110 individuals participated in 326 electrocardiogram recordings with a mean duration of 6 hr. Five-minute averages of heart rate (HR) and HRV parameters were determined. Individual noise exposure was measured as A-weighted equivalent continuous sound pressure levels (L(eq)). Effects were estimated using additive mixed models adjusted for long- and short-term time trends and physical activity. Due to nonlinear exposure-response functions, we performed piecewise linear analyses with a cut-off point at 65 dB(A).

Results: Concurrent increases of 5 dB(A) in L(eq) < 65 dB(A) were associated with increases in HR (percent change of mean value: 1.48%; 95% CI: 1.37, 1.60%) and the ratio of low-frequency (LF) to high-frequency (HF) power (4.89%; 95% CI: 3.48, 6.32%), and with decreases in LF (-3.77%; 95% CI: -5.49, -2.02%) and HF (-8.56%; 95% CI: -10.31, -6.78%) power. Standard deviation of normal-to-normal intervals (SDNN) was positively associated with concurrent noise < 65 dB(A) (5.74%; 95% CI: 5.13, 6.36) but negatively associated with noise lagged by 5-15 min (-0.53% to -0.69%). Associations with cardiac function were less pronounced for noise ≥ 65 dB(A), with some in opposite directions from associations with noise < 65 dB(A). Concurrent associations were modified by sex and age.

Conclusions: Individual daytime noise exposure was associated with immediate changes in HRV, suggesting a possible mechanism linking noise to cardiovascular risk. Noise at lower levels may have health consequences beyond those resulting from "fight-or-flight" responses to high levels of noise.

Show MeSH

Related in: MedlinePlus

Adjusted associations between ECG measures and a 5‑dB(A) increase in 5-min averages of noise exposure < 65 dB(A) (A) and ≥ 65 dB(A) (B). See Supplemental Material, Table S6 (http://dx.doi.org/10.1289/ehp.1205606) for numeric data.
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3672128&req=5

f1: Adjusted associations between ECG measures and a 5‑dB(A) increase in 5-min averages of noise exposure < 65 dB(A) (A) and ≥ 65 dB(A) (B). See Supplemental Material, Table S6 (http://dx.doi.org/10.1289/ehp.1205606) for numeric data.

Mentions: Association of noise and ECG parameters.The estimated percent changes in the mean values of each outcome associated with a 5-dB(A) increase in Leq are shown in Figure 1 [for numeric data, see also Supplemental Material, Table S6 (http://dx.doi.org/10.1289/ehp.1205606)]. HR and the LF:HF ratio increased in association with noise exposure above and below 65 dB(A), with stronger associations estimated for concurrent increases in Leq < 65 dB(A) (HR: 1.48%; 95% CI: 1.37, 1.60% and 0.18%; 95% CI: 0.05, 0.31%, respectively; LF:HF ratio: 4.89%; 95% CI: 3.48, 6.32 and 1.38%; 95% CI: 0.03, 2.75%, respectively). A 5-dB(A) increase in Leq < 65 dB(A) was associated with an immediate increase in SDNN (5.74%; 95% CI: 5.13, 6.36%) followed by decreases for lagged exposures that were significant when lagged 5–10 min (–0.67%; 95% CI: –1.26, –0.12%) and 10–15 min (–0.67%; 95% CI: –1.26, –0.13%). An increase in Leq ≥ 65 dB(A) was associated with a small reduction in concurrent SDNN (–0.67%; 95% CI: –1.30, –0.04%), but was not associated with lagged SDNN. LF and HF power decreased with concurrent noise < 65 dB(A) (–3.77%; 95% CI: –5.49, –2.02% and –8.56%; 95% CI: –10.31, –6.78, respectively), but lagged noise was positively associated with LF power (2.14% to 2.24%). In contrast, 5-dB(A) increases in Leq ≥ 65 dB(A) were associated with increased LF and HF power that were statistically significant for concurrent noise (4.42%; 95% CI: 2.59, 6.32% and 2.89%; 95% CI: 0.95, 4.87%, respectively) and lagged noise at 0–5 min (3.69%; 95% CI: 1.86, 5.56% and 3.45%; 95% CI: 1.50, 5.44%, respectively).


Individual daytime noise exposure during routine activities and heart rate variability in adults: a repeated measures study.

Kraus U, Schneider A, Breitner S, Hampel R, Rückerl R, Pitz M, Geruschkat U, Belcredi P, Radon K, Peters A - Environ. Health Perspect. (2013)

Adjusted associations between ECG measures and a 5‑dB(A) increase in 5-min averages of noise exposure < 65 dB(A) (A) and ≥ 65 dB(A) (B). See Supplemental Material, Table S6 (http://dx.doi.org/10.1289/ehp.1205606) for numeric data.
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3672128&req=5

f1: Adjusted associations between ECG measures and a 5‑dB(A) increase in 5-min averages of noise exposure < 65 dB(A) (A) and ≥ 65 dB(A) (B). See Supplemental Material, Table S6 (http://dx.doi.org/10.1289/ehp.1205606) for numeric data.
Mentions: Association of noise and ECG parameters.The estimated percent changes in the mean values of each outcome associated with a 5-dB(A) increase in Leq are shown in Figure 1 [for numeric data, see also Supplemental Material, Table S6 (http://dx.doi.org/10.1289/ehp.1205606)]. HR and the LF:HF ratio increased in association with noise exposure above and below 65 dB(A), with stronger associations estimated for concurrent increases in Leq < 65 dB(A) (HR: 1.48%; 95% CI: 1.37, 1.60% and 0.18%; 95% CI: 0.05, 0.31%, respectively; LF:HF ratio: 4.89%; 95% CI: 3.48, 6.32 and 1.38%; 95% CI: 0.03, 2.75%, respectively). A 5-dB(A) increase in Leq < 65 dB(A) was associated with an immediate increase in SDNN (5.74%; 95% CI: 5.13, 6.36%) followed by decreases for lagged exposures that were significant when lagged 5–10 min (–0.67%; 95% CI: –1.26, –0.12%) and 10–15 min (–0.67%; 95% CI: –1.26, –0.13%). An increase in Leq ≥ 65 dB(A) was associated with a small reduction in concurrent SDNN (–0.67%; 95% CI: –1.30, –0.04%), but was not associated with lagged SDNN. LF and HF power decreased with concurrent noise < 65 dB(A) (–3.77%; 95% CI: –5.49, –2.02% and –8.56%; 95% CI: –10.31, –6.78, respectively), but lagged noise was positively associated with LF power (2.14% to 2.24%). In contrast, 5-dB(A) increases in Leq ≥ 65 dB(A) were associated with increased LF and HF power that were statistically significant for concurrent noise (4.42%; 95% CI: 2.59, 6.32% and 2.89%; 95% CI: 0.95, 4.87%, respectively) and lagged noise at 0–5 min (3.69%; 95% CI: 1.86, 5.56% and 3.45%; 95% CI: 1.50, 5.44%, respectively).

Bottom Line: Concurrent increases of 5 dB(A) in L(eq) < 65 dB(A) were associated with increases in HR (percent change of mean value: 1.48%; 95% CI: 1.37, 1.60%) and the ratio of low-frequency (LF) to high-frequency (HF) power (4.89%; 95% CI: 3.48, 6.32%), and with decreases in LF (-3.77%; 95% CI: -5.49, -2.02%) and HF (-8.56%; 95% CI: -10.31, -6.78%) power.Standard deviation of normal-to-normal intervals (SDNN) was positively associated with concurrent noise < 65 dB(A) (5.74%; 95% CI: 5.13, 6.36) but negatively associated with noise lagged by 5-15 min (-0.53% to -0.69%).Noise at lower levels may have health consequences beyond those resulting from "fight-or-flight" responses to high levels of noise.

View Article: PubMed Central - PubMed

Affiliation: Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany. ute.kraus@helmholtz-muenchen.de

ABSTRACT

Background: Epidemiological studies have demonstrated associations between noise exposure and cardiovascular events. However, there have been few studies of possible underlying mechanisms.

Objectives: We examined the association between individual daytime noise exposure and heart rate variability (HRV).

Methods: In a prospective panel study in Augsburg, Germany (March 2007-December 2008), 110 individuals participated in 326 electrocardiogram recordings with a mean duration of 6 hr. Five-minute averages of heart rate (HR) and HRV parameters were determined. Individual noise exposure was measured as A-weighted equivalent continuous sound pressure levels (L(eq)). Effects were estimated using additive mixed models adjusted for long- and short-term time trends and physical activity. Due to nonlinear exposure-response functions, we performed piecewise linear analyses with a cut-off point at 65 dB(A).

Results: Concurrent increases of 5 dB(A) in L(eq) < 65 dB(A) were associated with increases in HR (percent change of mean value: 1.48%; 95% CI: 1.37, 1.60%) and the ratio of low-frequency (LF) to high-frequency (HF) power (4.89%; 95% CI: 3.48, 6.32%), and with decreases in LF (-3.77%; 95% CI: -5.49, -2.02%) and HF (-8.56%; 95% CI: -10.31, -6.78%) power. Standard deviation of normal-to-normal intervals (SDNN) was positively associated with concurrent noise < 65 dB(A) (5.74%; 95% CI: 5.13, 6.36) but negatively associated with noise lagged by 5-15 min (-0.53% to -0.69%). Associations with cardiac function were less pronounced for noise ≥ 65 dB(A), with some in opposite directions from associations with noise < 65 dB(A). Concurrent associations were modified by sex and age.

Conclusions: Individual daytime noise exposure was associated with immediate changes in HRV, suggesting a possible mechanism linking noise to cardiovascular risk. Noise at lower levels may have health consequences beyond those resulting from "fight-or-flight" responses to high levels of noise.

Show MeSH
Related in: MedlinePlus