Limits...
Plant ontogeny, spatial distance, and soil type influence patterns of relatedness in a common Amazonian tree.

Barbosa CE, Misiewicz TM, Fine PV, Costa FR - PLoS ONE (2013)

Bottom Line: By quantifying the patterns of relatedness among plants of different sizes, we inferred the ontogenetic stage in which SGS changes occurred, and compared these effects across soil types.Contrasting relatedness patterns between seedlings and larger individuals suggests a trade-off between the negative effects of being near closely-related adults (e.g. due to herbivore and pathogen attack) and the advantage of being in a site favorable to establishment.We also found that soil texture strongly influenced density-dependence patterns, as young seedlings in clay soils were more related to each other than were seedlings in bottomland sandy soils, suggesting that the mechanisms that create and maintain patterns of SGS within a population may interact with environmental heterogeneity.

View Article: PubMed Central - PubMed

Affiliation: Graduate Program in Ecology, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil. cadubarbosa@gmail.com

ABSTRACT
The formation of spatial genetic structure (SGS) may originate from different patterns of seed deposition in the landscape, and is mostly determined by seed dispersal limitation. After dispersal, mechanisms such as filtering by environmental factors or attack by herbivores/pathogens throughout plant development stages, and potentially either disrupt or intensify SGS patterns. We investigated how the genotype of Protium subserratum (Burseraceae), a common tree species in the Ducke Reserve, Brazil, is distributed across the landscape. We used seven microsatellite markers to assess the SGS among plants at different life stages and in different environments. By quantifying the patterns of relatedness among plants of different sizes, we inferred the ontogenetic stage in which SGS changes occurred, and compared these effects across soil types. Relatedness among seedlings decreased when distance between seedlings increased, especially for the youngest seedlings. However, this trend was not continued by older plants, as relatedness values were higher among neighboring individuals of the juvenile and adult size class. Contrasting relatedness patterns between seedlings and larger individuals suggests a trade-off between the negative effects of being near closely-related adults (e.g. due to herbivore and pathogen attack) and the advantage of being in a site favorable to establishment. We also found that soil texture strongly influenced density-dependence patterns, as young seedlings in clay soils were more related to each other than were seedlings in bottomland sandy soils, suggesting that the mechanisms that create and maintain patterns of SGS within a population may interact with environmental heterogeneity.

Show MeSH
Site location and sampling design.Study site location in the Central Amazon, north of Manaus, Brazil. The trail grid is shown in the right figure and the plots that contained sufficient individuals for SGS analyses are represented by black dots. Topographical variation is shown in a grey-scale, from low (white) to high areas (black). In the lower left of the figure the sampling scheme is depicted, including 5 sampling lines of 2 m width and 250 m length. The extra sampling area conducted around each adult (black dot), is represented by points around it (open circles), excluding areas previously sampled in the lines (gray circles).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3646837&req=5

pone-0062639-g001: Site location and sampling design.Study site location in the Central Amazon, north of Manaus, Brazil. The trail grid is shown in the right figure and the plots that contained sufficient individuals for SGS analyses are represented by black dots. Topographical variation is shown in a grey-scale, from low (white) to high areas (black). In the lower left of the figure the sampling scheme is depicted, including 5 sampling lines of 2 m width and 250 m length. The extra sampling area conducted around each adult (black dot), is represented by points around it (open circles), excluding areas previously sampled in the lines (gray circles).

Mentions: Ducke is a terra firme tropical forest that covers an area of 100 km2 at the northern limit of the city of Manaus (02°55′S, 59°59′W, Fig. 1) in the Brazilian state of Amazonas. It is a closed canopy forest, with trees reaching 35–40 m height [24] and includes a high abundance of understorey palms [25]. Ducke is under the jurisdiction of the Brazilian National Institute for Amazon Research (INPA), which issued permits for the sampling involved in the present study. The studied species is not an endangered or protected species.


Plant ontogeny, spatial distance, and soil type influence patterns of relatedness in a common Amazonian tree.

Barbosa CE, Misiewicz TM, Fine PV, Costa FR - PLoS ONE (2013)

Site location and sampling design.Study site location in the Central Amazon, north of Manaus, Brazil. The trail grid is shown in the right figure and the plots that contained sufficient individuals for SGS analyses are represented by black dots. Topographical variation is shown in a grey-scale, from low (white) to high areas (black). In the lower left of the figure the sampling scheme is depicted, including 5 sampling lines of 2 m width and 250 m length. The extra sampling area conducted around each adult (black dot), is represented by points around it (open circles), excluding areas previously sampled in the lines (gray circles).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3646837&req=5

pone-0062639-g001: Site location and sampling design.Study site location in the Central Amazon, north of Manaus, Brazil. The trail grid is shown in the right figure and the plots that contained sufficient individuals for SGS analyses are represented by black dots. Topographical variation is shown in a grey-scale, from low (white) to high areas (black). In the lower left of the figure the sampling scheme is depicted, including 5 sampling lines of 2 m width and 250 m length. The extra sampling area conducted around each adult (black dot), is represented by points around it (open circles), excluding areas previously sampled in the lines (gray circles).
Mentions: Ducke is a terra firme tropical forest that covers an area of 100 km2 at the northern limit of the city of Manaus (02°55′S, 59°59′W, Fig. 1) in the Brazilian state of Amazonas. It is a closed canopy forest, with trees reaching 35–40 m height [24] and includes a high abundance of understorey palms [25]. Ducke is under the jurisdiction of the Brazilian National Institute for Amazon Research (INPA), which issued permits for the sampling involved in the present study. The studied species is not an endangered or protected species.

Bottom Line: By quantifying the patterns of relatedness among plants of different sizes, we inferred the ontogenetic stage in which SGS changes occurred, and compared these effects across soil types.Contrasting relatedness patterns between seedlings and larger individuals suggests a trade-off between the negative effects of being near closely-related adults (e.g. due to herbivore and pathogen attack) and the advantage of being in a site favorable to establishment.We also found that soil texture strongly influenced density-dependence patterns, as young seedlings in clay soils were more related to each other than were seedlings in bottomland sandy soils, suggesting that the mechanisms that create and maintain patterns of SGS within a population may interact with environmental heterogeneity.

View Article: PubMed Central - PubMed

Affiliation: Graduate Program in Ecology, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil. cadubarbosa@gmail.com

ABSTRACT
The formation of spatial genetic structure (SGS) may originate from different patterns of seed deposition in the landscape, and is mostly determined by seed dispersal limitation. After dispersal, mechanisms such as filtering by environmental factors or attack by herbivores/pathogens throughout plant development stages, and potentially either disrupt or intensify SGS patterns. We investigated how the genotype of Protium subserratum (Burseraceae), a common tree species in the Ducke Reserve, Brazil, is distributed across the landscape. We used seven microsatellite markers to assess the SGS among plants at different life stages and in different environments. By quantifying the patterns of relatedness among plants of different sizes, we inferred the ontogenetic stage in which SGS changes occurred, and compared these effects across soil types. Relatedness among seedlings decreased when distance between seedlings increased, especially for the youngest seedlings. However, this trend was not continued by older plants, as relatedness values were higher among neighboring individuals of the juvenile and adult size class. Contrasting relatedness patterns between seedlings and larger individuals suggests a trade-off between the negative effects of being near closely-related adults (e.g. due to herbivore and pathogen attack) and the advantage of being in a site favorable to establishment. We also found that soil texture strongly influenced density-dependence patterns, as young seedlings in clay soils were more related to each other than were seedlings in bottomland sandy soils, suggesting that the mechanisms that create and maintain patterns of SGS within a population may interact with environmental heterogeneity.

Show MeSH