Limits...
Intrinsic properties of larval zebrafish neurons in ethanol.

Ikeda H, Delargy AH, Yokogawa T, Urban JM, Burgess HA, Ono F - PLoS ONE (2013)

Bottom Line: The behavioral effects of ethanol have been studied in multiple animal models including zebrafish.The intracellular [Ca(2+)] response in MiD3 neurons decreased in 100 mM ethanol, while Mauthner neurons and vestibulospinal neurons required >300 mM ethanol to elicit similar effects.The ethanol effect in Mauthner neurons was reversible following removal of ethanol.

View Article: PubMed Central - PubMed

Affiliation: Section on Model Synaptic Systems, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America.

ABSTRACT
The behavioral effects of ethanol have been studied in multiple animal models including zebrafish. Locomotion of zebrafish larvae is resistant to high concentrations of ethanol in bath solution. This resistance has been attributed to a lower systemic concentration of ethanol in zebrafish when compared with bath solution, although the mechanism to maintain such a steep gradient is unclear. Here we examined whether the intrinsic properties of neurons play roles in this resistance. In order to minimize the contribution of metabolism and diffusional barriers, larvae were hemisected and the anterior half immersed in a range of ethanol concentrations thereby ensuring the free access of bath ethanol to the brain. The response to vibrational stimuli of three types of reticulospinal neurons: Mauthner neurons, vestibulospinal neurons, and MiD3 neurons were examined using an intracellular calcium indicator. The intracellular [Ca(2+)] response in MiD3 neurons decreased in 100 mM ethanol, while Mauthner neurons and vestibulospinal neurons required >300 mM ethanol to elicit similar effects. The ethanol effect in Mauthner neurons was reversible following removal of ethanol. Interestingly, activities of MiD3 neurons displayed spontaneous recovery in 300 mM ethanol, suggestive of acute tolerance. Finally, we examined with mechanical vibration the startle response of free-swimming larvae in 300 mM ethanol. Ethanol treatment abolished long latency startle responses, suggesting a functional change in neural processing. These data support the hypothesis that individual neurons in larval zebrafish brains have distinct patterns of response to ethanol dictated by specific molecular targets.

Show MeSH

Related in: MedlinePlus

The effects of ethanol on spontaneous locomotion.Spontaneous locomotion kinematics of larval zebrafish (n = 20–25) after exposure to 0, 30, 100 and 300 mM ethanol for 30 min. Speed, distance, tail beat frequency, and swim amplitude are shown in A, B, C, and D, respectively. Numbers of analyzed larvae are shown in brackets (***P<0.001 versus 0 mM ethanol).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3643919&req=5

pone-0063318-g001: The effects of ethanol on spontaneous locomotion.Spontaneous locomotion kinematics of larval zebrafish (n = 20–25) after exposure to 0, 30, 100 and 300 mM ethanol for 30 min. Speed, distance, tail beat frequency, and swim amplitude are shown in A, B, C, and D, respectively. Numbers of analyzed larvae are shown in brackets (***P<0.001 versus 0 mM ethanol).

Mentions: We initially investigated the movement of free-swimming larvae in response to ethanol. The kinematics of spontaneous locomotion of 6 day post-fertilization (dpf) larval zebrafish were examined using automated motion detection and analysis software after 30 min incubation in 0–1000 mM ethanol [8], [13], [20]. In 1000 mM ethanol, larvae exhibited sedation after brief hyperactivity and died within 3 h. Larvae in 0–300 mM were subjected to kinematic analysis. The effect of ethanol on swim kinematics was robust and dose-dependent. While the tail beat frequency decreased slightly in response to 300 mM ethanol (Fig. 1C), the amplitude of tail beats displayed a robust increase (Fig. 1D), resulting in much greater swim speed (Fig. 1A) and distance traveled per swim bout (Fig. 1B). In humans, 10 mM (0.05%w/v) Blood Alcohol Concentration (BAC) produces stimulant effects (hostility-aggression and happiness) while BAC >20 mM (0.10%w/v) has depressant effects. BAC >68 mM (0.4%w/v) is often lethal. In contrast, the hyperactivity exhibited by zebrafish larvae bathed in 300 mM ethanol indicates their resistance, which largely agrees with previous studies.


Intrinsic properties of larval zebrafish neurons in ethanol.

Ikeda H, Delargy AH, Yokogawa T, Urban JM, Burgess HA, Ono F - PLoS ONE (2013)

The effects of ethanol on spontaneous locomotion.Spontaneous locomotion kinematics of larval zebrafish (n = 20–25) after exposure to 0, 30, 100 and 300 mM ethanol for 30 min. Speed, distance, tail beat frequency, and swim amplitude are shown in A, B, C, and D, respectively. Numbers of analyzed larvae are shown in brackets (***P<0.001 versus 0 mM ethanol).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3643919&req=5

pone-0063318-g001: The effects of ethanol on spontaneous locomotion.Spontaneous locomotion kinematics of larval zebrafish (n = 20–25) after exposure to 0, 30, 100 and 300 mM ethanol for 30 min. Speed, distance, tail beat frequency, and swim amplitude are shown in A, B, C, and D, respectively. Numbers of analyzed larvae are shown in brackets (***P<0.001 versus 0 mM ethanol).
Mentions: We initially investigated the movement of free-swimming larvae in response to ethanol. The kinematics of spontaneous locomotion of 6 day post-fertilization (dpf) larval zebrafish were examined using automated motion detection and analysis software after 30 min incubation in 0–1000 mM ethanol [8], [13], [20]. In 1000 mM ethanol, larvae exhibited sedation after brief hyperactivity and died within 3 h. Larvae in 0–300 mM were subjected to kinematic analysis. The effect of ethanol on swim kinematics was robust and dose-dependent. While the tail beat frequency decreased slightly in response to 300 mM ethanol (Fig. 1C), the amplitude of tail beats displayed a robust increase (Fig. 1D), resulting in much greater swim speed (Fig. 1A) and distance traveled per swim bout (Fig. 1B). In humans, 10 mM (0.05%w/v) Blood Alcohol Concentration (BAC) produces stimulant effects (hostility-aggression and happiness) while BAC >20 mM (0.10%w/v) has depressant effects. BAC >68 mM (0.4%w/v) is often lethal. In contrast, the hyperactivity exhibited by zebrafish larvae bathed in 300 mM ethanol indicates their resistance, which largely agrees with previous studies.

Bottom Line: The behavioral effects of ethanol have been studied in multiple animal models including zebrafish.The intracellular [Ca(2+)] response in MiD3 neurons decreased in 100 mM ethanol, while Mauthner neurons and vestibulospinal neurons required >300 mM ethanol to elicit similar effects.The ethanol effect in Mauthner neurons was reversible following removal of ethanol.

View Article: PubMed Central - PubMed

Affiliation: Section on Model Synaptic Systems, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America.

ABSTRACT
The behavioral effects of ethanol have been studied in multiple animal models including zebrafish. Locomotion of zebrafish larvae is resistant to high concentrations of ethanol in bath solution. This resistance has been attributed to a lower systemic concentration of ethanol in zebrafish when compared with bath solution, although the mechanism to maintain such a steep gradient is unclear. Here we examined whether the intrinsic properties of neurons play roles in this resistance. In order to minimize the contribution of metabolism and diffusional barriers, larvae were hemisected and the anterior half immersed in a range of ethanol concentrations thereby ensuring the free access of bath ethanol to the brain. The response to vibrational stimuli of three types of reticulospinal neurons: Mauthner neurons, vestibulospinal neurons, and MiD3 neurons were examined using an intracellular calcium indicator. The intracellular [Ca(2+)] response in MiD3 neurons decreased in 100 mM ethanol, while Mauthner neurons and vestibulospinal neurons required >300 mM ethanol to elicit similar effects. The ethanol effect in Mauthner neurons was reversible following removal of ethanol. Interestingly, activities of MiD3 neurons displayed spontaneous recovery in 300 mM ethanol, suggestive of acute tolerance. Finally, we examined with mechanical vibration the startle response of free-swimming larvae in 300 mM ethanol. Ethanol treatment abolished long latency startle responses, suggesting a functional change in neural processing. These data support the hypothesis that individual neurons in larval zebrafish brains have distinct patterns of response to ethanol dictated by specific molecular targets.

Show MeSH
Related in: MedlinePlus