Limits...
Functionalized gold nanorods for tumor imaging and targeted therapy.

Gui C, Cui DX - Cancer Biol Med (2012)

Bottom Line: Gold nanorods, as an emerging noble metal nanomaterial with unique properties, have become the new exciting focus of theoretical and experimental studies in the past few years.The structure and function of gold nanorods, especially their biocompatibility, optical property, and photothermal effects, have been attracting more and more attention.We also explore other prospective applications and discuss the corresponding concepts, issues, approaches, and challenges, with the aim of stimulating broader interest in gold nanorod-based nanotechnology and improving its practical application.

View Article: PubMed Central - PubMed

Affiliation: Department of Bio-Nano Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiaotong University, Shanghai 200240, China.

ABSTRACT
Gold nanorods, as an emerging noble metal nanomaterial with unique properties, have become the new exciting focus of theoretical and experimental studies in the past few years. The structure and function of gold nanorods, especially their biocompatibility, optical property, and photothermal effects, have been attracting more and more attention. Gold nanorods exhibit great potential in applications such as tumor molecular imaging and photothermal therapy. In this article, we review some of the main advances made over the past few years in the application of gold nanorods in surface functionalization, molecular imaging, and photothermal therapy. We also explore other prospective applications and discuss the corresponding concepts, issues, approaches, and challenges, with the aim of stimulating broader interest in gold nanorod-based nanotechnology and improving its practical application.

No MeSH data available.


Related in: MedlinePlus

Accumulation of gold nanorods in the tumors through both EPR and active binding. Reprinted with permission from [24], Li Z, Huang P, Zhang X, et al. RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. mol pharm 2010; 7: 94-104.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3643678&req=5

f13: Accumulation of gold nanorods in the tumors through both EPR and active binding. Reprinted with permission from [24], Li Z, Huang P, Zhang X, et al. RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. mol pharm 2010; 7: 94-104.

Mentions: All the above results confirmed that RGD-dGNR nanoprobes have active targeting abilities and exhibit selective destructive effects on targeted cancer cells under NIR laser irradiation. The results also suggested three possible therapeutic mechanisms, one of which is shown in Figure 13.


Functionalized gold nanorods for tumor imaging and targeted therapy.

Gui C, Cui DX - Cancer Biol Med (2012)

Accumulation of gold nanorods in the tumors through both EPR and active binding. Reprinted with permission from [24], Li Z, Huang P, Zhang X, et al. RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. mol pharm 2010; 7: 94-104.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3643678&req=5

f13: Accumulation of gold nanorods in the tumors through both EPR and active binding. Reprinted with permission from [24], Li Z, Huang P, Zhang X, et al. RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. mol pharm 2010; 7: 94-104.
Mentions: All the above results confirmed that RGD-dGNR nanoprobes have active targeting abilities and exhibit selective destructive effects on targeted cancer cells under NIR laser irradiation. The results also suggested three possible therapeutic mechanisms, one of which is shown in Figure 13.

Bottom Line: Gold nanorods, as an emerging noble metal nanomaterial with unique properties, have become the new exciting focus of theoretical and experimental studies in the past few years.The structure and function of gold nanorods, especially their biocompatibility, optical property, and photothermal effects, have been attracting more and more attention.We also explore other prospective applications and discuss the corresponding concepts, issues, approaches, and challenges, with the aim of stimulating broader interest in gold nanorod-based nanotechnology and improving its practical application.

View Article: PubMed Central - PubMed

Affiliation: Department of Bio-Nano Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiaotong University, Shanghai 200240, China.

ABSTRACT
Gold nanorods, as an emerging noble metal nanomaterial with unique properties, have become the new exciting focus of theoretical and experimental studies in the past few years. The structure and function of gold nanorods, especially their biocompatibility, optical property, and photothermal effects, have been attracting more and more attention. Gold nanorods exhibit great potential in applications such as tumor molecular imaging and photothermal therapy. In this article, we review some of the main advances made over the past few years in the application of gold nanorods in surface functionalization, molecular imaging, and photothermal therapy. We also explore other prospective applications and discuss the corresponding concepts, issues, approaches, and challenges, with the aim of stimulating broader interest in gold nanorod-based nanotechnology and improving its practical application.

No MeSH data available.


Related in: MedlinePlus