Limits...
Viral information.

Rohwer F, Barott K - Biol Philos (2012)

Bottom Line: Based on this premise, it is proposed that the thermodynamic consequences of physical information (e.g., Landauer's principle) are observed in natural viral populations.This link between physical and genetic information is then used to develop the Viral Information Hypothesis, which states that genetic information replicates itself to the detriment of system energy efficiency (i.e., is viral in nature).Finally, we show how viral information can be tested, and illustrate how this novel view can explain existing ecological and evolutionary theories from more fundamental principles.

View Article: PubMed Central - PubMed

Affiliation: Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 USA.

ABSTRACT
Viruses are major drivers of global biogeochemistry and the etiological agents of many diseases. They are also the winners in the game of life: there are more viruses on the planet than cellular organisms and they encode most of the genetic diversity on the planet. In fact, it is reasonable to view life as a viral incubator. Nevertheless, most ecological and evolutionary theories were developed, and continue to be developed, without considering the virosphere. This means these theories need to be to reinterpreted in light of viral knowledge or we need to develop new theory from the viral point-of-view. Here we briefly introduce our viral planet and then address a major outstanding question in biology: why is most of life viral? A key insight is that during an infection cycle the original virus is completely broken down and only the associated information is passed on to the next generation. This is different for cellular organisms, which must pass on some physical part of themselves from generation to generation. Based on this premise, it is proposed that the thermodynamic consequences of physical information (e.g., Landauer's principle) are observed in natural viral populations. This link between physical and genetic information is then used to develop the Viral Information Hypothesis, which states that genetic information replicates itself to the detriment of system energy efficiency (i.e., is viral in nature). Finally, we show how viral information can be tested, and illustrate how this novel view can explain existing ecological and evolutionary theories from more fundamental principles.

No MeSH data available.


Related in: MedlinePlus

From gravity to viral information: dust to phage. a Schematic of how gravity leads to viral information. b Schematic of how viruses shape ecology (1-3) and evolution (3), leading to diversification and an increase of viral information (4)
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3585991&req=5

Fig3: From gravity to viral information: dust to phage. a Schematic of how gravity leads to viral information. b Schematic of how viruses shape ecology (1-3) and evolution (3), leading to diversification and an increase of viral information (4)

Mentions: Let us compare and contrast physical and viral information. Gravity organizes the physical properties of the universe. Gravity clumps matter, which enhances the importance of the other three fundamental interactions. By organizing matter in time and space, gravity creates physical information. The cloud of subatomic particles from the Big Bang could have spread out evenly throughout the universe. Instead, small imperfections allowed gravity to pull some particles together; and these attracted others. Accretion discs developed and collapsed into stars, where gravity fused the matter together forming heavier elements and led to the production of electromagnetic radiation. These processes increase the physical information content within the universe through strictly physical processes (Fig. 3a). Gravity also reinforces itself—bigger things attract more objects, creating a positive feedback loop. Biology also reinforces itself by organizing compounds and concentrating them. Just like gravity, life creates organization of particles in the universe through juxtaposition and rearrangement. The organization of matter by biology leads to viral information because it converts physical information into itself at the cost of maximal efficiency from a thermodynamic point of view.Fig. 3


Viral information.

Rohwer F, Barott K - Biol Philos (2012)

From gravity to viral information: dust to phage. a Schematic of how gravity leads to viral information. b Schematic of how viruses shape ecology (1-3) and evolution (3), leading to diversification and an increase of viral information (4)
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3585991&req=5

Fig3: From gravity to viral information: dust to phage. a Schematic of how gravity leads to viral information. b Schematic of how viruses shape ecology (1-3) and evolution (3), leading to diversification and an increase of viral information (4)
Mentions: Let us compare and contrast physical and viral information. Gravity organizes the physical properties of the universe. Gravity clumps matter, which enhances the importance of the other three fundamental interactions. By organizing matter in time and space, gravity creates physical information. The cloud of subatomic particles from the Big Bang could have spread out evenly throughout the universe. Instead, small imperfections allowed gravity to pull some particles together; and these attracted others. Accretion discs developed and collapsed into stars, where gravity fused the matter together forming heavier elements and led to the production of electromagnetic radiation. These processes increase the physical information content within the universe through strictly physical processes (Fig. 3a). Gravity also reinforces itself—bigger things attract more objects, creating a positive feedback loop. Biology also reinforces itself by organizing compounds and concentrating them. Just like gravity, life creates organization of particles in the universe through juxtaposition and rearrangement. The organization of matter by biology leads to viral information because it converts physical information into itself at the cost of maximal efficiency from a thermodynamic point of view.Fig. 3

Bottom Line: Based on this premise, it is proposed that the thermodynamic consequences of physical information (e.g., Landauer's principle) are observed in natural viral populations.This link between physical and genetic information is then used to develop the Viral Information Hypothesis, which states that genetic information replicates itself to the detriment of system energy efficiency (i.e., is viral in nature).Finally, we show how viral information can be tested, and illustrate how this novel view can explain existing ecological and evolutionary theories from more fundamental principles.

View Article: PubMed Central - PubMed

Affiliation: Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 USA.

ABSTRACT
Viruses are major drivers of global biogeochemistry and the etiological agents of many diseases. They are also the winners in the game of life: there are more viruses on the planet than cellular organisms and they encode most of the genetic diversity on the planet. In fact, it is reasonable to view life as a viral incubator. Nevertheless, most ecological and evolutionary theories were developed, and continue to be developed, without considering the virosphere. This means these theories need to be to reinterpreted in light of viral knowledge or we need to develop new theory from the viral point-of-view. Here we briefly introduce our viral planet and then address a major outstanding question in biology: why is most of life viral? A key insight is that during an infection cycle the original virus is completely broken down and only the associated information is passed on to the next generation. This is different for cellular organisms, which must pass on some physical part of themselves from generation to generation. Based on this premise, it is proposed that the thermodynamic consequences of physical information (e.g., Landauer's principle) are observed in natural viral populations. This link between physical and genetic information is then used to develop the Viral Information Hypothesis, which states that genetic information replicates itself to the detriment of system energy efficiency (i.e., is viral in nature). Finally, we show how viral information can be tested, and illustrate how this novel view can explain existing ecological and evolutionary theories from more fundamental principles.

No MeSH data available.


Related in: MedlinePlus