Limits...
Systemic inflammation in progressive multiple sclerosis involves follicular T-helper, Th17- and activated B-cells and correlates with progression.

Romme Christensen J, Börnsen L, Ratzer R, Piehl F, Khademi M, Olsson T, Sørensen PS, Sellebjerg F - PLoS ONE (2013)

Bottom Line: The Th17-subset, interleukin-23-receptor(+)CD4(+)T-cells, was significantly increased in PPMS and SPMS.In the analysis of B-cells, we found a significant increase of plasmablasts and DC-SIGN(+) and CD83(+)B-cells in SPMS.In conclusion, this study is the first to demonstrate the potential involvement of activated TFH-cells in MS.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurology, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark. jeppe.romme.christensen@rh.regionh.dk

ABSTRACT
Pathology studies of progressive multiple sclerosis (MS) indicate a major role of inflammation including Th17-cells and meningeal inflammation with ectopic lymphoid follicles, B-cells and plasma cells, the latter indicating a possible role of the newly identified subset of follicular T-helper (TFH) cells. Although previous studies reported increased systemic inflammation in progressive MS it remains unclear whether systemic inflammation contributes to disease progression and intrathecal inflammation. This study aimed to investigate systemic inflammation in progressive MS and its relationship with disease progression, using flow cytometry and gene expression analysis of CD4(+) and CD8(+)T-cells, B-cells, monocytes and dendritic cells. Furthermore, gene expression of cerebrospinal fluid cells was studied. Flow cytometry studies revealed increased frequencies of ICOS(+)TFH-cells in peripheral blood from relapsing-remitting (RRMS) and secondary progressive (SPMS) MS patients. All MS subtypes had decreased frequencies of Th1 TFH-cells, while primary progressive (PPMS) MS patients had increased frequency of Th17 TFH-cells. The Th17-subset, interleukin-23-receptor(+)CD4(+)T-cells, was significantly increased in PPMS and SPMS. In the analysis of B-cells, we found a significant increase of plasmablasts and DC-SIGN(+) and CD83(+)B-cells in SPMS. ICOS(+)TFH-cells and DC-SIGN(+)B-cells correlated with disease progression in SPMS patients. Gene expression analysis of peripheral blood cell subsets substantiated the flow cytometry findings by demonstrating increased expression of IL21, IL21R and ICOS in CD4(+)T-cells in progressive MS. Cerebrospinal fluid cells from RRMS and progressive MS (pooled SPMS and PPMS patients) had increased expression of TFH-cell and plasmablast markers. In conclusion, this study is the first to demonstrate the potential involvement of activated TFH-cells in MS. The increased frequencies of Th17-cells, activated TFH- and B-cells parallel findings from pathology studies which, along with the correlation between activated TFH- and B-cells and disease progression, suggest a pathogenic role of systemic inflammation in progressive MS. These observations may have implications for the treatment of progressive MS.

Show MeSH

Related in: MedlinePlus

Flow cytometry studies on B-cell and monocytes in peripheral blood from multiple sclerosis patients and healthy controls.Mean plots show mean percentages with error bars representing 95% confidence intervals. Dot plots show values for parameters tested in Spearman's rank correlation coefficient. (A) Flow cytometry plot showing characterization of DC-SIGN+B-cells. (B) The frequency of DC-SIGN+B-cells is significantly increased in secondary progressive multiple sclerosis (SPMS) patients as compared to healthy controls (HC). (C) The frequency of DC-SIGN+B-cells correlates significantly with change in expanded disability status scale (EDSS) 2 years prior to sampling of blood in the SPMS group. (D) CD83+B-cells were identified as shown on flow cytometry plot and (E) the frequency is significantly increased in SPMS patients compared to HCs. (F) Plasmablasts were identified as CD27HighCD38HighB-cells and (G) have lower CD19 expression than total B-cells, consistent with a plasmablast phenotype. (H) Plasmablasts are increased in SPMS patients compared to age-matched healthy controls (HC old). (I) Monocyte frequency is significantly increased in SPMS patients compared to HCs. (J) Identification of ICOS-ligand+ (ICOSL) monocytes is shown on flow cytometry plot and the frequency is increased in SPMS patients compared to HCs (K).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3585852&req=5

pone-0057820-g002: Flow cytometry studies on B-cell and monocytes in peripheral blood from multiple sclerosis patients and healthy controls.Mean plots show mean percentages with error bars representing 95% confidence intervals. Dot plots show values for parameters tested in Spearman's rank correlation coefficient. (A) Flow cytometry plot showing characterization of DC-SIGN+B-cells. (B) The frequency of DC-SIGN+B-cells is significantly increased in secondary progressive multiple sclerosis (SPMS) patients as compared to healthy controls (HC). (C) The frequency of DC-SIGN+B-cells correlates significantly with change in expanded disability status scale (EDSS) 2 years prior to sampling of blood in the SPMS group. (D) CD83+B-cells were identified as shown on flow cytometry plot and (E) the frequency is significantly increased in SPMS patients compared to HCs. (F) Plasmablasts were identified as CD27HighCD38HighB-cells and (G) have lower CD19 expression than total B-cells, consistent with a plasmablast phenotype. (H) Plasmablasts are increased in SPMS patients compared to age-matched healthy controls (HC old). (I) Monocyte frequency is significantly increased in SPMS patients compared to HCs. (J) Identification of ICOS-ligand+ (ICOSL) monocytes is shown on flow cytometry plot and the frequency is increased in SPMS patients compared to HCs (K).

Mentions: In our flow cytometry analyses we included a detailed phenotyping of B-cells, monocytes, myeloid and plasmacytoid dendritic cells (Table S1 and S2B–C), all cell types with known antigen-presenting cell (APC) function. We found higher frequencies of DC-SIGN+B-cells and CD83+B-cells in SPMS than in HCs and DC-SIGN+B-cells frequency correlated with disease progression in SPMS (Figure 2A, B, C, D, E). Of note both subsets correlated significantly with IL23R+CD4+T-cells and ICOS+TFH-cells (Figure S1), indicating an association between these T- and B-cell subsets. Plasmablasts were identified as CD27HighCD38HighB-cells and were increased in SPMS patients compared to HCs (Figure 2F, G, H). We also observed an increased percentage of monocytes and monocytes expressing ICOS-ligand (ICOSL) in SPMS (Figure 2J, K), whereas other differences observed for B-cells, monocytes and dendritic cells were not statistically significant after FDR-correction for multiple comparisons.


Systemic inflammation in progressive multiple sclerosis involves follicular T-helper, Th17- and activated B-cells and correlates with progression.

Romme Christensen J, Börnsen L, Ratzer R, Piehl F, Khademi M, Olsson T, Sørensen PS, Sellebjerg F - PLoS ONE (2013)

Flow cytometry studies on B-cell and monocytes in peripheral blood from multiple sclerosis patients and healthy controls.Mean plots show mean percentages with error bars representing 95% confidence intervals. Dot plots show values for parameters tested in Spearman's rank correlation coefficient. (A) Flow cytometry plot showing characterization of DC-SIGN+B-cells. (B) The frequency of DC-SIGN+B-cells is significantly increased in secondary progressive multiple sclerosis (SPMS) patients as compared to healthy controls (HC). (C) The frequency of DC-SIGN+B-cells correlates significantly with change in expanded disability status scale (EDSS) 2 years prior to sampling of blood in the SPMS group. (D) CD83+B-cells were identified as shown on flow cytometry plot and (E) the frequency is significantly increased in SPMS patients compared to HCs. (F) Plasmablasts were identified as CD27HighCD38HighB-cells and (G) have lower CD19 expression than total B-cells, consistent with a plasmablast phenotype. (H) Plasmablasts are increased in SPMS patients compared to age-matched healthy controls (HC old). (I) Monocyte frequency is significantly increased in SPMS patients compared to HCs. (J) Identification of ICOS-ligand+ (ICOSL) monocytes is shown on flow cytometry plot and the frequency is increased in SPMS patients compared to HCs (K).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3585852&req=5

pone-0057820-g002: Flow cytometry studies on B-cell and monocytes in peripheral blood from multiple sclerosis patients and healthy controls.Mean plots show mean percentages with error bars representing 95% confidence intervals. Dot plots show values for parameters tested in Spearman's rank correlation coefficient. (A) Flow cytometry plot showing characterization of DC-SIGN+B-cells. (B) The frequency of DC-SIGN+B-cells is significantly increased in secondary progressive multiple sclerosis (SPMS) patients as compared to healthy controls (HC). (C) The frequency of DC-SIGN+B-cells correlates significantly with change in expanded disability status scale (EDSS) 2 years prior to sampling of blood in the SPMS group. (D) CD83+B-cells were identified as shown on flow cytometry plot and (E) the frequency is significantly increased in SPMS patients compared to HCs. (F) Plasmablasts were identified as CD27HighCD38HighB-cells and (G) have lower CD19 expression than total B-cells, consistent with a plasmablast phenotype. (H) Plasmablasts are increased in SPMS patients compared to age-matched healthy controls (HC old). (I) Monocyte frequency is significantly increased in SPMS patients compared to HCs. (J) Identification of ICOS-ligand+ (ICOSL) monocytes is shown on flow cytometry plot and the frequency is increased in SPMS patients compared to HCs (K).
Mentions: In our flow cytometry analyses we included a detailed phenotyping of B-cells, monocytes, myeloid and plasmacytoid dendritic cells (Table S1 and S2B–C), all cell types with known antigen-presenting cell (APC) function. We found higher frequencies of DC-SIGN+B-cells and CD83+B-cells in SPMS than in HCs and DC-SIGN+B-cells frequency correlated with disease progression in SPMS (Figure 2A, B, C, D, E). Of note both subsets correlated significantly with IL23R+CD4+T-cells and ICOS+TFH-cells (Figure S1), indicating an association between these T- and B-cell subsets. Plasmablasts were identified as CD27HighCD38HighB-cells and were increased in SPMS patients compared to HCs (Figure 2F, G, H). We also observed an increased percentage of monocytes and monocytes expressing ICOS-ligand (ICOSL) in SPMS (Figure 2J, K), whereas other differences observed for B-cells, monocytes and dendritic cells were not statistically significant after FDR-correction for multiple comparisons.

Bottom Line: The Th17-subset, interleukin-23-receptor(+)CD4(+)T-cells, was significantly increased in PPMS and SPMS.In the analysis of B-cells, we found a significant increase of plasmablasts and DC-SIGN(+) and CD83(+)B-cells in SPMS.In conclusion, this study is the first to demonstrate the potential involvement of activated TFH-cells in MS.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurology, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark. jeppe.romme.christensen@rh.regionh.dk

ABSTRACT
Pathology studies of progressive multiple sclerosis (MS) indicate a major role of inflammation including Th17-cells and meningeal inflammation with ectopic lymphoid follicles, B-cells and plasma cells, the latter indicating a possible role of the newly identified subset of follicular T-helper (TFH) cells. Although previous studies reported increased systemic inflammation in progressive MS it remains unclear whether systemic inflammation contributes to disease progression and intrathecal inflammation. This study aimed to investigate systemic inflammation in progressive MS and its relationship with disease progression, using flow cytometry and gene expression analysis of CD4(+) and CD8(+)T-cells, B-cells, monocytes and dendritic cells. Furthermore, gene expression of cerebrospinal fluid cells was studied. Flow cytometry studies revealed increased frequencies of ICOS(+)TFH-cells in peripheral blood from relapsing-remitting (RRMS) and secondary progressive (SPMS) MS patients. All MS subtypes had decreased frequencies of Th1 TFH-cells, while primary progressive (PPMS) MS patients had increased frequency of Th17 TFH-cells. The Th17-subset, interleukin-23-receptor(+)CD4(+)T-cells, was significantly increased in PPMS and SPMS. In the analysis of B-cells, we found a significant increase of plasmablasts and DC-SIGN(+) and CD83(+)B-cells in SPMS. ICOS(+)TFH-cells and DC-SIGN(+)B-cells correlated with disease progression in SPMS patients. Gene expression analysis of peripheral blood cell subsets substantiated the flow cytometry findings by demonstrating increased expression of IL21, IL21R and ICOS in CD4(+)T-cells in progressive MS. Cerebrospinal fluid cells from RRMS and progressive MS (pooled SPMS and PPMS patients) had increased expression of TFH-cell and plasmablast markers. In conclusion, this study is the first to demonstrate the potential involvement of activated TFH-cells in MS. The increased frequencies of Th17-cells, activated TFH- and B-cells parallel findings from pathology studies which, along with the correlation between activated TFH- and B-cells and disease progression, suggest a pathogenic role of systemic inflammation in progressive MS. These observations may have implications for the treatment of progressive MS.

Show MeSH
Related in: MedlinePlus