Limits...
MicroRNA-203 suppresses cell proliferation and migration by targeting BIRC5 and LASP1 in human triple-negative breast cancer cells.

Wang C, Zheng X, Shen C, Shi Y - J. Exp. Clin. Cancer Res. (2012)

Bottom Line: Both miR-203 and LASP1 siRNA signicantly inhibited cell migration in TNBC cells, also.Moreover, up-regulated of BIRC5 and LASP1 was able to abrogate the effects induced by transfection with the miR-203 precursor.These data suggest that miR-203 may function as a tumor suppressor in TNBC cells.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Breast Oncology, Tianjin Medical University Cancer Hospital, Huanhuxi Ave, Tianjin 300060, China.

ABSTRACT

Background: This study was performed to investigate the effect of microRNA-203 (miR-203) on cell proliferation and migration in triple-negative breast cancer (TNBC).

Methods: Real-time PCR was performed to detect the expression of miR-203 in TNBC cell lines. miR-203 precursor and control microRNA (miRNA) were transfected into triple-negative breast cancer (TNBC) cell lines and the effects of miR-203 up-regulation on the proliferation and migration of cells were investigated. Meanwhile, the mRNA and protein levels of baculoviral IAP repeat-containing protein 5 (BIRC5) and Lim and SH3 domain protein 1 (LASP1) were measured. Luciferase assays were also performed to validate BIRC5 and LASP1 as miR-203 targets.

Results: Both miR-203 and BIRC5 siRNA signicantly inhibited cell proliferation in TNBC cells. Both miR-203 and LASP1 siRNA signicantly inhibited cell migration in TNBC cells, also. Moreover, up-regulated of BIRC5 and LASP1 was able to abrogate the effects induced by transfection with the miR-203 precursor.

Conclusions: These data suggest that miR-203 may function as a tumor suppressor in TNBC cells. Thus, miR-203 could be a potential therapeutic target for this disease.

Show MeSH

Related in: MedlinePlus

BIRC5 and LASP1 were identified as miR-203 target genes. (A) Immunoblots of BIRC5 and LASP1 protein in TNBC cells after treated with miR-203 precursor or control miRNA. β-actin was used as a loading control. (B) Relative BIRC5 and LASP1 expression at mRNA level in TNBC cells transfected with miR-203 precursor or control miRNA. The mRNA expression was normalized to that of β-actin. (C) Sequence alignment of miR-203 and its putative conserved target site in BIRC5 and LASP1 3’-UTR (downloaded from TargetScan 6.0). (D) Luciferase reporter assays of the interaction between miR-203 and the BIRC5 and LASP1 3’-UTRs. Assays were performed by co-transfection of miR-203 precursor with a luciferase reporter gene linked to the 3’-UTRs of BIRC5 and LASP1, containing either wild type or mutated miR-203 complementary sites. *, P < 0.05.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3585778&req=5

Figure 3: BIRC5 and LASP1 were identified as miR-203 target genes. (A) Immunoblots of BIRC5 and LASP1 protein in TNBC cells after treated with miR-203 precursor or control miRNA. β-actin was used as a loading control. (B) Relative BIRC5 and LASP1 expression at mRNA level in TNBC cells transfected with miR-203 precursor or control miRNA. The mRNA expression was normalized to that of β-actin. (C) Sequence alignment of miR-203 and its putative conserved target site in BIRC5 and LASP1 3’-UTR (downloaded from TargetScan 6.0). (D) Luciferase reporter assays of the interaction between miR-203 and the BIRC5 and LASP1 3’-UTRs. Assays were performed by co-transfection of miR-203 precursor with a luciferase reporter gene linked to the 3’-UTRs of BIRC5 and LASP1, containing either wild type or mutated miR-203 complementary sites. *, P < 0.05.

Mentions: To explore the molecular mechanism of miR-203 activity, we used TargetScan 6.0 to search for target genes of miR-203, especially for genes with potential roles in promoting tumor cell proliferation and migration. It has been reported that individual miRNAs are capable of regulating dozens of distinct mRNAs. Based on this rationale, we selected two candidate miR-203 targets, BIRC5 and LASP1, for further study. We examined the influence of miR-203 on the endogenous expression of BIRC5 and LASP1 proteins by western blot. Intriguingly, BIRC5 and LASP1 expression were significantly decreased in miR-203-transfected MDA-MB-231 and MDA-MB-468 cells compared with control miRNA-transfected cells (Figure 3A). It was reported that miRNA can cause either mRNA degradation or translation repression. QPCR assay was also carried out to detect BIRC5 and LASP1 expression at mRNA level after transefected with miR-203 precursor in TNBC cells. We found that a decrease of BIRC5 and LASP1 mRNA in TNBC cells after treated (Figure 3B), so we believe that miRNA-203 regulates BIRC5 and LASP1 expression at both protein and mRNA levels. Moreover, a potential miR-203 targeting site was predicted in the 3’-UTRs of BIRC5 and LASP1 by TargetScan 6.0 (Figure 3C). To investigate whether the 3’-UTRs of BIRC5 and LASP1 are functional targets of miR-203 in breast cancer cells, we co-transfected the miR-203 precursor (or control miRNA) and pMIR-BIRC5-3’-UTR plasmid (or mutant) or pMIR-LASP1-3’-UTR plasmid (or mutant) into cells. Co-transfection with the miR-203 precursor was found to decrease wild type BIRC5 and LASP1 3’-UTR reporter activity (P < 0.05) compared with co-transfection with control miRNA in both two cell lines. However, co-transfection with the miR-203 precursor did not significantly alter mutant BIRC5 or LASP1 3’-UTR reporter activity (Figure 3D). These results demonstrated that miR-203 targets the predicted site within the 3’-UTRs of BIRC5 and LASP1 mRNA in TNBC cell lines.


MicroRNA-203 suppresses cell proliferation and migration by targeting BIRC5 and LASP1 in human triple-negative breast cancer cells.

Wang C, Zheng X, Shen C, Shi Y - J. Exp. Clin. Cancer Res. (2012)

BIRC5 and LASP1 were identified as miR-203 target genes. (A) Immunoblots of BIRC5 and LASP1 protein in TNBC cells after treated with miR-203 precursor or control miRNA. β-actin was used as a loading control. (B) Relative BIRC5 and LASP1 expression at mRNA level in TNBC cells transfected with miR-203 precursor or control miRNA. The mRNA expression was normalized to that of β-actin. (C) Sequence alignment of miR-203 and its putative conserved target site in BIRC5 and LASP1 3’-UTR (downloaded from TargetScan 6.0). (D) Luciferase reporter assays of the interaction between miR-203 and the BIRC5 and LASP1 3’-UTRs. Assays were performed by co-transfection of miR-203 precursor with a luciferase reporter gene linked to the 3’-UTRs of BIRC5 and LASP1, containing either wild type or mutated miR-203 complementary sites. *, P < 0.05.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3585778&req=5

Figure 3: BIRC5 and LASP1 were identified as miR-203 target genes. (A) Immunoblots of BIRC5 and LASP1 protein in TNBC cells after treated with miR-203 precursor or control miRNA. β-actin was used as a loading control. (B) Relative BIRC5 and LASP1 expression at mRNA level in TNBC cells transfected with miR-203 precursor or control miRNA. The mRNA expression was normalized to that of β-actin. (C) Sequence alignment of miR-203 and its putative conserved target site in BIRC5 and LASP1 3’-UTR (downloaded from TargetScan 6.0). (D) Luciferase reporter assays of the interaction between miR-203 and the BIRC5 and LASP1 3’-UTRs. Assays were performed by co-transfection of miR-203 precursor with a luciferase reporter gene linked to the 3’-UTRs of BIRC5 and LASP1, containing either wild type or mutated miR-203 complementary sites. *, P < 0.05.
Mentions: To explore the molecular mechanism of miR-203 activity, we used TargetScan 6.0 to search for target genes of miR-203, especially for genes with potential roles in promoting tumor cell proliferation and migration. It has been reported that individual miRNAs are capable of regulating dozens of distinct mRNAs. Based on this rationale, we selected two candidate miR-203 targets, BIRC5 and LASP1, for further study. We examined the influence of miR-203 on the endogenous expression of BIRC5 and LASP1 proteins by western blot. Intriguingly, BIRC5 and LASP1 expression were significantly decreased in miR-203-transfected MDA-MB-231 and MDA-MB-468 cells compared with control miRNA-transfected cells (Figure 3A). It was reported that miRNA can cause either mRNA degradation or translation repression. QPCR assay was also carried out to detect BIRC5 and LASP1 expression at mRNA level after transefected with miR-203 precursor in TNBC cells. We found that a decrease of BIRC5 and LASP1 mRNA in TNBC cells after treated (Figure 3B), so we believe that miRNA-203 regulates BIRC5 and LASP1 expression at both protein and mRNA levels. Moreover, a potential miR-203 targeting site was predicted in the 3’-UTRs of BIRC5 and LASP1 by TargetScan 6.0 (Figure 3C). To investigate whether the 3’-UTRs of BIRC5 and LASP1 are functional targets of miR-203 in breast cancer cells, we co-transfected the miR-203 precursor (or control miRNA) and pMIR-BIRC5-3’-UTR plasmid (or mutant) or pMIR-LASP1-3’-UTR plasmid (or mutant) into cells. Co-transfection with the miR-203 precursor was found to decrease wild type BIRC5 and LASP1 3’-UTR reporter activity (P < 0.05) compared with co-transfection with control miRNA in both two cell lines. However, co-transfection with the miR-203 precursor did not significantly alter mutant BIRC5 or LASP1 3’-UTR reporter activity (Figure 3D). These results demonstrated that miR-203 targets the predicted site within the 3’-UTRs of BIRC5 and LASP1 mRNA in TNBC cell lines.

Bottom Line: Both miR-203 and LASP1 siRNA signicantly inhibited cell migration in TNBC cells, also.Moreover, up-regulated of BIRC5 and LASP1 was able to abrogate the effects induced by transfection with the miR-203 precursor.These data suggest that miR-203 may function as a tumor suppressor in TNBC cells.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Breast Oncology, Tianjin Medical University Cancer Hospital, Huanhuxi Ave, Tianjin 300060, China.

ABSTRACT

Background: This study was performed to investigate the effect of microRNA-203 (miR-203) on cell proliferation and migration in triple-negative breast cancer (TNBC).

Methods: Real-time PCR was performed to detect the expression of miR-203 in TNBC cell lines. miR-203 precursor and control microRNA (miRNA) were transfected into triple-negative breast cancer (TNBC) cell lines and the effects of miR-203 up-regulation on the proliferation and migration of cells were investigated. Meanwhile, the mRNA and protein levels of baculoviral IAP repeat-containing protein 5 (BIRC5) and Lim and SH3 domain protein 1 (LASP1) were measured. Luciferase assays were also performed to validate BIRC5 and LASP1 as miR-203 targets.

Results: Both miR-203 and BIRC5 siRNA signicantly inhibited cell proliferation in TNBC cells. Both miR-203 and LASP1 siRNA signicantly inhibited cell migration in TNBC cells, also. Moreover, up-regulated of BIRC5 and LASP1 was able to abrogate the effects induced by transfection with the miR-203 precursor.

Conclusions: These data suggest that miR-203 may function as a tumor suppressor in TNBC cells. Thus, miR-203 could be a potential therapeutic target for this disease.

Show MeSH
Related in: MedlinePlus